CHARACTERIZATION OF (Mg0.5ZN0.5)TiO3 CERAMICS AS MATERIAL CANDIDATES FOR DIELECTRIC RESONATOR AT MICROWAVE FREQUENCY
Authors
Asep Mugni Muammar , Frida Ulfah ErmawatiDOI:
10.29303/ipr.v5i2.142Published:
2022-04-30Issue:
Vol. 5 No. 2 (2022)Keywords:
(Mg0.5Zn0.5) TiO3 ceramic, microwave , dielectric, resonator, structure, microstructure, bulk densityArticles
Downloads
How to Cite
Abstract
MgTiO3 ceramic is one of the dielectric materials used as a signal generator (dielectric resonator) in microwave telecommunication devices. This research is intended to explore the possibility of a new composition of MgTiO3-based ceramic, i.e. (Mg0.5Zn0.5)TiO3 (abbreviated MZT05) as a dielectric resonator material. The aim was to characterize the resonant frequency of the ceramics on the microwaves (measured using spectrum analyzer), and the results were correlated to structure (X-Ray Diffraction, XRD), microstructure (Scanning Electron Microscope, SEM), and bulk density data (Archimedes method) of the ceramics. The work was begun by compacting the MZT05 crystalline powder in a cylindrical shape with a diameter of 5 mm using a uniaxial die press to produce tablets. The tablets were sintered at 1300 ºC with variations holding times of 6, 8, and 10 h to produce ceramics. The structural data revealed that the MgTiO3 phase was identified as the main ceramics, i.e. (96.32-98.70) %molar. The bulk density increased with increasing sinter holding time, from 2.75 g/cm3 (6 h), 2.84 g/cm3 (8 h) to 2.99 g/cm3 (10 h) due to the increase in grain size diameter from 919.75 nm (6 h), 1090.62 nm (8 h) to 1180.72 nm (10 h) accompanied by a decrease in the size of the pore diameter from 924.14 nm (6 h), 917.05 nm (8 h) to 800.22 nm (10 h). The ceramics produced resonant frequencies of 5.07–5.08 GHz, which implies that the ceramics are proven to be potential candidates for dielectric resonator materials at microwave frequencies, especially at 5.07-5.08 GHz. The varying sinter holding time seems not to influence the resonant frequency of the ceramics because the variation holding times produce similar resonant frequencies.References
Zhang, J., Yue, Z., Luo, Y., & Li, L. (2018). MgTiO3/TiO2/MgTiO3: An ultrahigh-Q and temperature-stable microwave dielectric ceramic through cofired trilayer architecture. Ceramics International, 44(17), 21000–21003. https://doi.org/10.1016/j.ceramint.2018.08.135
Ali, A., Zaman, A., Aldulmani, S. A. A., Abbas, M., Mushtaq, M., Bashir, K., Amami, M., & Althubeiti, K. (2022). Structural Evolution and Microwave Dielectric Properties of Ba1-X SrxTi4O9, (0.0≤x≤0.06) Ceramics. ACS Omega, 1–6. https://doi.org/10.1021/acsomega.1c06212
Moulson, A. J., And, & Herbert, J. M. (2003). Electroceramics Second Edition Materials,Properties,Applications (2nd ed.).
TEMEX, E. (2015). Dielectric Resonator. https://exxelia.com/uploads/PDF/e7000-v1.pdf (accessed Feb. 27, 2022).
Sedghi, H., & Rezazadeh, H. (2020). A broadband asymmetric microwave metamaterial based on LC and standing-wave resonances. Physics Letters, Section A: General, Atomic and Solid State Physics, 384(29), 126758. https://doi.org/10.1016/j.physleta.2020.126758
Taryana, Y., Sulaeman, Y., Praludi, T., Wahyu, Y., & Santiko, A. B. (2018). Design of 9.4 GHz Dielectric Resonator Oscillator with an Additional Single Stage Amplifier. 2018 International Seminar on Intelligent Technology and Its Applications (ISITIA), 9–13. https://doi.org/10.1109/ISITIA.2018.8711128
Skyworks. (2017). Properties, Test Methods, and Mounting of Dielectric Resonators. 2. https://cm-sitecore.skyworksinc.com/-/media/SkyWorks/Documents/Products/25012600/Properties_and_Mounting_of_Dielectric_Resonators_202803B.pdf. Retrieved February 11, 2020
Sreelakshmi, K., & Kumar Dora, R. (2021). Dielectric Resonator Oscillator. International
Journal of Advance Research, Ideas and Innovations in Technology, 7(4), 6–8. https://www.ijariit.com/manuscripts/v7i4/V7I4-1154.pdf
Tyagi, A. K., & Parul. (2014). Synthesis and Characterization of Ceramic Dielectric Resonator Materials for Microwave Communication Technology. Procedia Materials Science, 5, 1322–1331. https://doi.org/10.1016/j.mspro.2014.07.449
Ullah, A., Liu, H., Manan, A., Ahmad, A. S., Pengcheng, Z., Hao, H., Cao, M., Yao, Z., Ullah, A., Jan, A., Emmanuel, M., & Iqbal, J. (2021). Microwave dielectric properties of Bi2(Li0.5Ta1.5)O7–TiO2-based ceramics for 5G cellular base station resonator application. Ceramics International, 47(6), 8416–8423. https://doi.org/10.1016/j.ceramint.2020.11.206
Sun, H., Qi, Y., & Zhang, J. (2020). Applied Surface Science Surface organic modified magnesium titanate particles with three coupling agents : Characterizations , properties and potential application areas. Applied Surface Science, 520(April), 146322. https://doi.org/10.1016/j.apsusc.2020.146322
Yue, T., Li, L., Du, M., & Zhan, Y. (2021). Multilayer co-fired microwave dielectric ceramics in MgTiO3-Li2TiO3 system with linear temperature coefficient of resonant frequency. Scripta Materialia, 205, 114185. https://doi.org/10.1016/j.scriptamat.2021.114185
Nilawati, E., & Ermawati, F. U. (2021). Karakterisasi Keramik (Mg0,8Zn0,2)TiO3+ 4wt% Bi2O3 sebagai Material Dielectric Resonator Oscillator, Struktur, Mikrostruktur dan Densitasnya. Jurnal Fisika Unand, 10(2), 239–247. https://doi.org/https://doi.org/10.25077/jfu.10.2.239-247.2021
Izza, L., & Ermawati, F. U. (2021). Characterization of (Mg1.0Zn0.0)TiO3+4 wt%Bi2O3 Ceramics for Application as Resonator in Dielectric Resonator Oscillator Circuit. Jurnal Ilmu Fisika | Universitas Andalas, 13(2), 62–69. https://doi.org/10.25077/jif.13.2.62-69.2021
Shen, C.-H., Pan, C.-L., & Lin, S.-H. (2020). A Study of the Effect of Sintering Conditions of Mg0.95Ni0.05Ti3 on Its Physical and Dielectric Properties. Molecules, 25(24). https://doi.org/10.3390/molecules25245988
Ermawati, Frida U., Pratapa, S., Suasmoro, S., Hübert, T., & Banach, U. (2016). Preparation and structural study of Mg1−xZnxTiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz. Journal of Materials Science: Materials in Electronics, 27(7), 6637–6645. https://doi.org/10.1007/s10854-016-4610-6
Rostianbudi, F. Y., & Ermawati, F. U. (2020). Fabrikasi Dan Karakterisasi Struktur Dan Densitas Keramik (Mg0,5Zn0,5)Tio3 + x Wt.% Bi2O3 Sebagai Kandidat Material Dielektrik. Inovasi Fisika Indonesia, 9(2). https://doi.org/https://doi.org/10.26740/ifi.v9n2.p%25p
Gogoi, P., Singh, L. R., & Pamu, D. (2017). Characterization of Zn doped MgTiO3 ceramics: an approach for RF capacitor applications. Journal of Materials Science: Materials in Electronics, 28(16), 11712–11721. https://doi.org/10.1007/s10854-017-6975-6
Sumadiyasa, M., & Manuaba, I. B. S. (2018). Determining Crystallite Size Using Scherrer Formula, Williamson-Hull Plot, and Particle Size with SEM. BULETIN FISIKA, 19, 28. https://doi.org/10.24843/BF.2018.v19.i01.p06
Nurrohman, H. (2017). Pengaruh variasi temperatur dan waktu Holding Sintering terhadap Sifat Mekanik dan Morfologi Biodegradable Material Mg-Fe-Zn dengan Metode Metalurgi Serbuk untuk Aplikasi Orthopedic Devices. 107. http://repository.its.ac.id/2055/
V. Sharon Samyuktha, Prof. T. Subba Rao, & Prof. R. Padma Suvarna. (2016). Synthesis and Dielectric Properties of MgTiO3 Ceramic Material . International Journal of Engineering Research And, V5(05), 245–249. https://doi.org/10.17577/ijertv5is050349
Ermawati, Frida U. (2018). Difraksi Sinar-X: Teori dan Analisis Data Eksperimen. In Surabaya: Unipress UNESA.
Fang, Z., Yang, H., Yang, H., Xiong, Z., Zhang, X., Zhao, P., & Tang, B. (2021). Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceramics International, April. https://doi.org/10.1016/j.ceramint.2021.04.148
Sciencelab.com. (n.d.). Material Safety Data Sheet Zinc, Metal Powder or Dust MSDS. Retrieved March 5, 2022, from https://esciencelabs.com/sites/default/files/msds_files/Zinc %28Piece%29.pdf
William D. Callister, Jr., D. G. R. (2010). Materials Science and Engineering an Introduction. In Materials Science and Engineering an Introduction (Vol. 1).
Ermawati, Frida U. (2019). Struktur Kristal Bahan Keramik. Unesa University Press.
Ji, X., Yi, F., Zhang, S., Zhai, C., & Hu, P. (2014). Effects of ZnO addition and sintering temperature on dielectric properties of MgTiO3 ceramic. Key Engineering Materials, 616, 145–152. https://doi.org/10.4028/www.scientific.net/KEM.616.145
Zharvan, V. (2020). Studi Pengaruh Variasi Temperatur Kalsinasi Terhadap Fasa Mg0,8Zn0,2TiO3. Jurnal Ilmu Fisika : Teori Dan Aplikasinya, 2(2), 45-48. Retrieved from https://ejournals.umma.ac.id/index.php/jifta/article/view/793
Rettiningtyas, N., & Ermawati, F. U. (2020). Sintesis dan Fabrikasi Keramik (Mg0,8Zn0,2)TiO3 + 2 wt% Bi2O3 Sebagai Bahan Dielektrik Serta Karakterisasi Struktur dan Densitasnya Akibat Variasi Waktu Tahan Sinter. Inovasi Fisika Indonesia, 9(2). https://doi.org/https://doi.org/10.26740/ifi.v9n2.p%25p
Johan, A., & Ramlan. (2008). Karakterisasi Konduktivitas, Porositas dan Densitas Bahan Keramik Na- β”-Al2O3 dari Komposisi Na2O 13% dan Al2O3 87% dengan Variasi Waktu Penahanan. Jurnal Penelitian Sains, 11(3), 544–551. https://doi.org/https://doi.org/10.26554/jps.v11i3.395
Kadarosman, A., & Ermawati, F. U. (2021). The Use of (Mg0.9Zn0.1)TiO3+2 wt.% Bi2O3 Ceramics As A Dielectric Resonator Oscillator Material and Characterisation of Structure, Microstructure, And Density. Jurnal Neutrino, 13(2), 67–79. https://doi.org/10.18860/neu.v13i2.11720
Ermawati, F. U. (2021). The Response of (Mg0.6Zn0.4)TiO3 Ceramic System as A Dielectric Resonator Oscillator at C-Band. Journal of Physics: Conference Series, 1805(1), 0–6. https://doi.org/10.1088/1742-6596/1805/1/012039
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).