STRUCTURE AND MORPHOLOGY ANALYSIS OF ANNEALING POST-TREATMENT THIN FILM TITANIUM AND COPPER-DOPED ZINC OXIDE
Authors
Budi Astuti , Niswatul Abidah , Krisna Ardi Nugraha , Egy Awalia FatihaDOI:
10.29303/ipr.v6i3.235Published:
2023-08-10Issue:
Vol. 6 No. 3 (2023)Keywords:
Thin film, Annealing temperature, Spin coating, Ti-Cu doped ZnOArticles
Downloads
How to Cite
Abstract
Ti-Cu doped ZnO thin film has been successfully deposited on a preparate glass substrate using the spin coating method with post-treatment annealing temperatures of 350oC - 550oC. This research analyzes the structure and morphology of Ti-Cu doped ZnO thin films on DSSC performance. The crystal structure of Ti-Cu doped ZnO thin film was characterized using X-Ray diffraction (XRD) to determine the effect of annealing temperature on the quality of its crystal structure. XRD results show that the crystal structure is dominant in the (101) plane, with lattice parameters in the crystal tending to be constant at a = b = 5.21 and c = 3.25 so that the crystal volume tends to be constant at 47.77 Å. Furthermore, the FWHM value tends to decrease from 0.4419o to 0.2523o, crystal size tends to increase from 19.76 nm to 34.60 nm, dislocation density decreases from 0.0025 nm-2 to 0.0008 nm-2, stress decreases from 0.58% to 0.33%, and strain tends to increase from -1.364 GPa to -0.782 GPa. This indicates an improvement in crystal structure along with the addition of an annealing temperature of 350oC - 550oC. The SEM results showed that an annealing temperature of 450oC is a good temperature compared to other film variations, as evidenced by the agglomeration's narrowing and the grain size decrease.References
Y. Kuo, "Thin film transistor technology-Past, present, and future," Electrochem. Soc. Interface, vol. 22, no. 1, pp. 55–61, 2013, doi: 10.1149/2.F06131if.
Hardeli, Suwardani, Riky, F. T, Maulidis, and S. Ridwan, “Dye Sensitized Solar Cells ( DSSC ) Berbasis Nanopori TiO2 Menggunakan Antosianin dari Berbagai Sumber Alami,” in Semirata FMIPA Universitas Lampung, 2013, pp. 155–162.
B. Astuti, I. Maftuchah, and N. Arina, “Bab Vii . Efek Daya Plasma Terhadap Sifat Fotoluminesen Film Tipis ZnO Doping Al,” Kimia, no. 1, pp. 160–196, 2021, doi: 10.15294/ik.v1i1.66.
P. Banerjee and A. Lakhtakia, Thin Film Nanophotonics, no. August. Amsterdam, 2021.
C. Huo and M. Dai, "Transparent Nano Thin-Film Transistors for Medical Sensors , OLED and Display Applications," Int. J. Nnaomedicine, vol. 15, pp. 3597–3603, 2020, doi: 10.2147/IJN.S228940.
Sulhadi et al., "Influence of annealing temperature on the morphology and crystal structure of Ga-doped ZnO thin films Influence of annealing temperature on the morphology and crystal structure of Ga-doped ZnO thin films," in Journal of Psics Conferencesics Conference, 2019, vol. 1170, pp. 1–4, doi: 10.1088/1742-6596/1170/1/012066.
F. Babar et al., "Nanostructured photoanode materials and their deposition methods for efficient and economical third generation dye-sensitized solar cells: A comprehensive review," Renew. Sustain. Energy Rev., vol. 129, no. C, p. 109919, 2020, doi: 10.1016/j.rser.2020.109919.
S. N. Karthick, K. V Hemalatha, S. K. Balasingam, F. M. Clinton, and S. Akshaya, "Dye-Sensitized Solar Cells : History , Components , Configuration , and Working Principle," in Interfacial Engineering in Functional Materials for Dye-Sensitized Solar Cells, A. Pandikumar, K. Jothivenkatachalam, and K. Bhojanaa, Eds. John Wiley & Sons, Inc, 2020.
N. Jamalullail, I. S. Mohamad, M. N. Norizan, N. Mahmed, and B. Nadia, "Recent improvements on TiO2 and ZnO nanostructure photoanode for dye sensitized solar cells : A brief review," in EPJ Web of Conferences, 2017, vol. 162, pp. 1–5, doi: 10.1051/epjconf/201716201045.
O. Bayram, M. Emrah, E. Erdal, I. Harun, and O. Simsek, "Synthesis and characterization of Zn-doped Mn 3 O 4 thin films using successive ionic layer adsorption and reaction technique : Its structural , optical and wettability properties," J. Mater. Sci. Mater. Electron., vol. 29, no. 11, pp. 9466–9473, 2018, doi: 10.1007/s10854-018-8980-9.
I. M. El Radaf, T. A. Hameed, T. M. Dahy, and G. M. El, "Synthesis, Structural, Linear and Nonlinear optical properties of chromium doped SnO2 thin films," Ceram. Int., vol. 45, no. 3, pp. 1–9, 2018, doi: 10.1016/j.ceramint.2018.10.189.
A. S. Bakri et al., "Effect of annealing temperature of titanium dioxide thin films on structural and electrical properties," in International Conference on Engineering, Science and Nanotechnology, 2016, vol. 1788, pp. 1–9, doi: 10.1063/1.4968283.
V. Devthade and S. Lee, "Synthesis of vanadium dioxide thin films and nanostructures Synthesis of vanadium dioxide thin films and nanostructures," AIP Adv., vol. 10, no. August 2020, pp. 1–54, 2021, doi: 10.1063/5.0027690.
B. Astuti, A. Zhafirah, N. Hamid, D. Aryanto, and P. Marwoto, "Structure , morphology , and optical properties of ZnO : Mg thin film prepared by sol-gel spin coating method," J. Ilm. Pendidik. Fis. A-Biruni, vol. 10, no. 2, pp. 241–250, 2021, doi: 10.24042/jipfalbiruni.v10i2.7239.
S. Il Cho, H. K. Sung, S. J. Lee, W. H. Kim, D. H. Kim, and Y. S. Han, "Photovoltaic performance of dye-sensitized solar cells containing ZnO microrods," Nanomaterials, vol. 9, no. 12, pp. 1–12, 2019, doi: 10.3390/nano9121645.
P. Marwoto, Sugianto, Sulhadi, D. Aryanto, E. Wibowo, and Yanti, "Highly Oriented ZnO:Al Thin Films as an Alternative Transparent Conducting Oxide (TCO) for Windows Layer of Solar Cells," Adv. Mater. Res., vol. 1123, pp. 364–367, 2015, doi: 10.4028/www.scientific.net/amr.1123.364.
R. Vittal and K. C. Ho, "Zinc oxide based dye-sensitized solar cells: A review," Renew. Sustain. Energy Rev., vol. 70, pp. 920–935, 2017, doi: 10.1016/j.rser.2016.11.273.
C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, and W. Geng, "Effect of Fe doping on structural and optical properties of ZnO films and nanorods," J. Alloys Compd., 2018, doi: 10.1016/j.jallcom.2018.08.217.
J. Ghosh, R. Ghosh, and P. K. Giri, "Sensors and Actuators B : Chemical Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection," Sensors Actuators B. Chem., vol. 254, pp. 681–689, 2018, doi: 10.1016/j.snb.2017.07.110.
B. Astuti et al., "X-ray diffraction studies of ZnO : Cu thin films prepared using sol-gel method," in journal of physics conference, 2020, pp. 1–7, doi: 10.1088/1742-6596/1567/2/022004.
S. Uyar, B. Coskun, M. İlhan, and M. M. Koc, "Optoelectronic Properties of ZnO:TiO2 Nanocomposite Thin Films," J. Mater. Electron. Devices, vol. 5, no. 1, pp. 21–27, 2021, [Online]. Available: http://www.dergi-fytronix.com/index.php/jmed/article/view/140.
B. Mehmood, M. I. Khan, M. Iqbal, A. Mahmood, and W. Al-Masry, "Structural and optical properties of Ti and Cu co-doped ZnO thin films for photovoltaic applications of dye sensitized solar cells," Int. J. Energy Res., vol. 45, no. 2, pp. 2445–2459, 2021, doi: 10.1002/er.5939.
Muaz Akm, H. U, I. Fatimah, T. KL, M. M. S, and L. Wei-Wen, "Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin lms synthesized by the sol–gel method and deposited on Al/TiO2/SiO2/p-Si," Microsyst Technol, vol. 22, no. 4, pp. 871–881, 2016, doi: https://doi.org/10.100/s00542-015-2514-7.
U. Chaitra, D. Kekuda, and K. Mohan Rao, "Effect of annealing temperature on the evolution of structural, microstructural, and optical properties of spin coated ZnO thin films," Ceram. Int., vol. 43, no. 9, pp. 7115–7122, 2017, doi: 10.1016/j.ceramint.2017.02.144.
D. K. Muthee and B. F. Dejene, "Effect of annealing temperature on structural, optical, and photocatalytic properties of titanium dioxide nanoparticles," heliyon, vol. 7, no. 6, 2021, doi: https://doi.org/ 10.1016/j.heliyon.2021.e07269.
H. Cai, K. Tuokedaerhan, L. Zhenchuan, R. Zhang, and H. Du, "Effect of Annealing Temperature on the Structural, Optical, and Electrical Properties of Al-Doped ZrO2 Gate Dielectric Films Treated by the Sol–Gel Method," Coatings, vol. 12, p. 1873, 2022, doi: https://doi.org/10.3390/ coatings12121837.
D. Aryanto, "Preparation and structural characterization of ZnO thin films by sol-gel method," in journal of physics conference, 2017, pp. 1–9, doi: 10.1088/1742-6596/817/1/012025.
R. B. Rajput, R. Shaikh, J. Sawant, and R. B. Kale, "Recent developments in ZnO-based heterostructures as photoelectrocatalysts for wastewater treatment : A review," Environ. Adv., vol. 9, p. 100264, 2022, doi: 10.1016/j.envadv.2022.100264.
H. Zhang, Y. Lv, C. Yang, and H. Chen, "One-Step Hydrothermal Fabrication of TiO 2 / Reduced Graphene Oxide for High-Efficiency Dye-Sensitized Solar Cells," J. Electron. Mater., vol. 47, no. 2, pp. 1630–1637, 2018, doi: 10.1007/s11664-017-5973-z.
A. Roy and A. Majumdar, "Optoelectronic and surface properties of CuO clusters: thin film solar cell," J. Mater. Sci. Mater. Electron., vol. 32, no. 23, pp. 27823–27836, 2021, doi: 10.1007/s10854-021-07165-x.
C. Rameshkumar, D. Ananth, V. Divyalakshmi, M. Balakrishnan, G. Senthilkumar, and R. Subalakshmi, "An Investigation of SnO2 Nanofilm for Solar Cell Application By Spin Coating Technique," in AIP Conference Proceedings, 2021, vol. 2341, doi: 10.1063/5.0050617.
X. Wu, "Preparation of Bi-based photocatalysts in the View Article Online DOI: 10.1039/D0TA01180K Form of Powdered Particles and Thin Films: A Review," J. Mater. Chem. A, vol. 8, no. 31, pp. 15302–15318, 2020, doi: 10.1039/D0TA01180K.
R. Dowais, S. Al Sharie, M. Araydah, S. Al Khasawneh, F. Haddad, and A. AlJaiuossi, "Pearl-white gallstones: A report of a case and a chemical analysis by FTIR and XRD," Int. J. Surg. Case Rep., vol. 87, p. 106449, 2021, doi: 10.1016/j.ijscr.2021.106449.
Z. Sinaga, “Analisis Ukuran Kristal Dan Sifat Magnetik Melalui Proses Pemesinan Milling Menggunakan Metode Karakterisasi Xrd , Mechannical Alloying , Dan Ultrasonik Tekanan Tinggi Pada Material Barium Hexaferrite ( Bafe12o19 ),” J. Kaji. Tek. Mesin, vol. 5, no. 1, pp. 9–14, 2020.
W. Amananti and H. Sutanto, “Analisis Sifat Optis Lapisan Tipis ZnO , TiO 2 , TiO 2 : ZnO , dengan dan Tanpa Lapisan Penyangga yang Dideposisikan Menggunakan Metode Sol-Gel Spray Coating,” J. Fis. Indones., vol. XIX, no. 55, pp. 41–44, 2015.
J. Chauhan, N. Shrivastav, A. Dugaya, and D. Pandey, "Synthesis and characterization of Ni and Cu doped Zno," J. Nanomedicine Nsnotechnology, vol. 8, pp. 1–8, 2019, doi: 10.15406/mojps.2017.01.00005.
H. Meddeb et al., "Tunable Photovoltaics: Adapting Solar Cell Technologies to Versatile Applications," Adv. Energy Mater., vol. 12, no. 28, 2022, doi: https://doi.org/10.1002/aenm.202200713.
K. P. M. S. Wahyuningsih, “Konduktivitas dan Transmitansi Film Tipis Zinc Oxide yang Dideposisikan Pada Temperatur Ruang,” Unnes Phys. J., vol. 2, no. 1, pp. 37–43, 2013, doi: http://journal.unnes.ac.id/sju/index.php/upj.
M. A. R. Pambudi and S. Suprapto, “Penentuan Kadar Tembaga (Cu) dalam Sampel Batuan Mineral,” J. Sains dan Seni ITS, vol. 7, no. 2, pp. 20–23, 2019, doi: 10.12962/j23373520.v7i2.30088.
E. Pratiwi, H. Harlia, and A. B. Aritonang, “Sintesis TiO2 terdoping Fe3+ untuk Degradasi Rhodamin B Secara Fotokatalisis dengan Bantuan Sinar Tampak,” Positron, vol. 10, no. 1, pp. 57–63, 2020, doi: 10.26418/positron.v10i1.37739.
B. D. Siswanto, “Pengaruh Temperatur Artificial Age Terhadap Kekerasan, Kekuatan Luluh dan Kerapatan Dislokasi Pada Paduan Al97,11Mg1,52Si0,86Zn0,51,” J. Mech. Eng. Manuf. Mater. Energy, vol. 5, no. 2, pp. 115–133, 2021, doi: 10.31289/jmemme.v5i2.4630.
K. W. Böer and U. W. Pohl, "Semiconductors, Optical Materials, Electrical and Electronic Engineering, Applied and Technical Physics, Electronic Devices, Laser," in Semiconductor Physics, 2020, p. 1200.
C. H. Burgess, R. Kilmurray, and M. A. Mclachlan, "Effect of processing temperature on fi lm properties of ZnO prepared by the aqueous method and related organic photovoltaics and LEDs," R. Soc. Chem., vol. 7, no. 15, pp. 2809–2817, 2020, doi: 10.1039/d0qi00497a.
C. . Ching, P. . Ooi, Z. Hassan, A. Hassan, and M. Abdullah, "Structural Properties of Zinc Oxide Thin Films Deposited on Various Substrates," Sains Malaysiana, vol. 43, no. 6, pp. 923–927, 2014.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).