CRYSTAL STRUCTURE ANALYSIS OF CuCrO2 BASED ON XRD DATA USING GSAS SOFTWARE
Authors
Lalu A. Didik , Muh. WahyudiDOI:
10.29303/ipr.v4i1.73Published:
2021-02-09Issue:
Vol. 4 No. 1 (2021)Keywords:
Crystal Structure, CuCrO2, XRD, GSASArticles
Downloads
How to Cite
Abstract
The synthesis of CuCrO2 crystals by mixing CuO and Cr2O3 has been carried out using the solid reaction method at a temperature of 1200 0C. The characterization of the structure used XRD and analyzed using GSAS software. The results of characterization using XRD showed that no other phase occurred. This is evidenced by the absence of other phases from the results of refinement of measurement data with reference data and a value of χ 2 which is 1.222. The lattice parameter values resulting from the refinement of the CuCrO2 X-ray diffraction pattern are a = b = 2.9715 Å and c = 17.1104 Å with a cell volume of 130.584 Å 3. In addition to the lattice parameter values, the distance between atoms was also obtained, both Cu - O, Cr - Cr, and Cr - O.References
M. Poienar, F. Damay, C. Martin, V. Hardy, A. Maignan, and G. André, “Structural and magnetic properties of CuCr1-xMg xO2 by neutron powder diffraction,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 1, pp. 1–8, 2009, doi: 10.1103/PhysRevB.79.014412.
M. Amami, S. Smari, K. Tayeb, P. Strobel, and A. Ben Salah, “Cationic doping effect on the structural , magnetic and spectroscopic properties of delafossite oxides CuCr 1 − x ( Sc , Mg ) x O 2,” Mater. Chem. Phys., vol. 128, no. 1–2, pp. 298–302, 2011, doi: 10.1016/j.matchemphys.2011.03.021.
A. T. Apostolov, I. N. Apostolova, and J. M. Wesselinowa, “Ferroelectricity in the multiferroic delafossite CuFeO 2 induced by ion doping or magnetic fi eld,” Solid State Commun., vol. 292, no. September 2018, pp. 11–16, 2019, doi: 10.1016/j.ssc.2019.01.014.
C. F. O, S. Pantian, R. Sakdanuphab, and A. Sakulkalavek, “Materials Science & Engineering B E ff ect of starch addition on structural , electrical and thermal properties of,” vol. 226, no. August, pp. 39–46, 2017, doi: 10.1016/j.mseb.2017.08.029.
H. Chen and J. Fu, “Delafossite – CuFeO 2 thin fi lms prepared by atmospheric pressure plasma annealing,” Mater. Lett., vol. 120, pp. 47–49, 2014, doi: 10.1016/j.matlet.2014.01.017.
A. Barnabé, E. Mugnier, L. Presmanes, and P. Tailhades, “Preparation of delafossite CuFeO 2 thin films by rf-sputtering on conventional glass substrate,” Mater. Lett., vol. 60, pp. 3468–3470, 2006, doi: 10.1016/j.matlet.2006.03.033.
E. Guilmeau et al., “Mg substitution in CuCrO 2 delafossite compounds,” vol. 151, pp. 1798–1801, 2011, doi: 10.1016/j.ssc.2011.08.023.
C. T. Crespo, “Potentiality of CuFeO 2 -delafossite as a solar energy converter,” Sol. Energy, vol. 163, no. January, pp. 162–166, 2018, doi: 10.1016/j.solener.2018.01.091.
J. Ahmed and Y. Mao, “Journal of Solid State Chemistry Synthesis , characterization and electrocatalytic properties of,” J. Solid State Chem., vol. 242, pp. 77–85, 2016, doi: 10.1016/j.jssc.2016.07.006.
G. W. Arnold, T., Payne, D. J., Bourlange, A., Hu, J. P., Egdell, R. G., Piper, L. F. J., Watson, “X-ray Spectroscopic Study of The Electronic Structure of CuCrO2,” Phys. Rev. B, vol. 79, no. 7, 2009, doi: doi:10.1103/physrevb.79.075102.
A. Maignan et al., “On the strong impact of doping in the triangular antiferromagnet CuCrO 2,” Solid State Commun., vol. 149, no. 23–24, pp. 962–967, 2009, doi: 10.1016/j.ssc.2009.02.026.
M. Kumar and C. Persson, “Structural , electronic and optical properties of silver delafossite oxides : A fi rst-principles study with hybrid functional,” Phys. B Phys. Condens. Matter, vol. 422, pp. 20–27, 2013, doi: 10.1016/j.physb.2013.04.035.
W. A. Sebayang, P., Muljadi., Adi, “Analisis Struktur Kristal SrO.6Fe2O3 Menggunakan Program General Structure Analysis System dan Pengujian Sifat Magnetnya.,” J. Sains Mater. Indones., vol. Vol. 12, pp. 215-220., 2010.
S. D. Yudanto and Y. Yuswono, “Analisis Struktur dan Permodelan Kristal Calcium Manganese Oxide (CaMnO3),” Metalurgi, vol. 29, no. 1, p. 27, 2018, doi: 10.14203/metalurgi.v29i1.268.
L. A. Didik, “Penentuan Ukuran Butir Kristal CuCr0,98Ni0,02O2 dengan Menggunakan X-Ray Difraction (XRD) dan Scanning Electron Microscope (SEM),” Indones. Phys. Rev., vol. 3, no. 1, pp. 6–14, 2020, doi: https://doi.org/10.29303/ip r.v3i1.37.
T. N. M. Ngo, U. Adem, and T. T. M. Palstra, “The origin of thermally stimulated depolarization currents in multiferroic,” Appl. Phys. Lett., vol. 106, no. 2015, p. 152904, 2017, doi: 10.1063/1.4918747.
L. A. Didik, “Pengaruh Pemberian Medan Magnet Terhadap Konstanta Dielektrik Material AgCrO2,” KONSTAN, vol. 2, no. 1, pp. 1–5, 2016.
L. A. Didik, “Analisa Efek Jahn Teller Terhadap Struktur Kristal Senyawa Delafossite AgCr1-xNixO2 (0,01 ≤ x ≤ 0,04),” Indones. Phys. Rev., vol. 2, no. 2, pp. 49–56, 2019, doi: https://doi.org/10.29303/i pr.v2v2.22.
F. Jlaiel, M. Amami, N. Boudjada, P. Strobel, and A. Ben Salah, “Metal transition doping effect on the structural and physical properties of delafossite-type oxide CuCrO 2,” J. Alloys Compd., vol. 509, no. 29, pp. 7784–7788, 2011, doi: 10.1016/j.jallcom.2011.04.153.
M. Asemi, M., & Ghanaatshoar, “Conductivity Improvement of CuCrO 2 Nanoparticles by Zn Doping and their Application in Solid-State Dye-Sensitized Solar Cells,” Ceram. Int., vol. 42, no. 6, pp. 6664–6672, 2016, doi: doi:10.1016/j.ceramint.2016.01.017.
T. Elkhouni, M. Amami, C. V Colin, P. Strobel, and A. Ben Salah, “Synthesis , Structural and Magnetic Studies of the CuCr1-x CoxO2 Delafossite Oxide,” J. Magn. Magn. Mater., vol. 330, pp. 101–105, 2013, doi: 10.1016/j.jmmm.2012.10.037.
D. Xiong, Q. Zhang, S. Kumar, H. Li, and W. Chen, “Use of delafossite oxides CuCr 1-x Ga x O 2 nanocrystals in p-type dye-sensitized solar cell,” vol. 662, pp. 374–380, 2016, doi: 10.1016/j.jallcom.2015.12.044.
F. Lin, C. Gao, X. Zhou, W. Shi, and A. Liu, “Magnetic , electrical and optical properties of p-type Fe-doped CuCrO 2 semiconductor thin films,” J. Alloys Compd., vol. 581, pp. 502–507, 2013, doi: 10.1016/j.jallcom.2013.07.160.
License
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).