Vol. 1 No. 1 (2018)
Open Access
Peer Reviewed

TWO-PARTICLE THERMAL DENSITY MATRICES IN ONE DIMENSION USING FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD

Authors

subhan subhan , I Wayan Sudiarta , Lily Maysari Angraini

DOI:

10.29303/ipr.v1i1.13

Downloads

Received: Oct 29, 2018
Accepted: Oct 31, 2018
Published: Oct 31, 2018

Abstract

A quantum system in the thermal equilibrium state is a mixed state consisting of statistical ensembles of several different quantum systems can be represented by a thermal density matrix. In this research, the thermal density matrix is calculated for two-particle system case non-interaction in one-dimensional square well and one-dimensional harmonic oscillator using finite difference time domain (FDTD) method. In addition, thermal density matrix calculations are also performed for the case of two particle systems interacting in a one-dimensional harmonic oscillator. We present results of probability densities, partition functions, and internal energies for three cases: two distinguishable particles, two fermions and two bosons. Validation of numerical results of thermal density matrix and probability density is accurate with analytical solutions. Then, the result of partition function and internal energy the system is strongly effect by temperature. At low temperatures, internal energy the system will lead to the lowest energy or ground state.

References

Feynmann R P. 1972. Statistical Mechanics. Reading, MA : Benjamin.

Greiner W, dkk. 1995. Thermodynamics and Statistical Mechanics. New York : Springer.

Karl Blum. 2012. Density Matrix Theory and Applications 3rd Edition. Germany : Springer-Verlag Berlin Heidelberg.

Landau L. D. and Lifshitz E. M. 1958. Statistical Physics. London-Paris: Pergamon Press.

Journal articles:

Bransden B. H. dan Charles J. J. 1989. Introduction to quantum mechanics. Longman Scientific & Technical.

Borrmann P. 1994. Path Integral Density Functional Theory. Oldenburg: Carl von Ossietzky Universit at Oldenburg.

D Ter Haar. 1961. Theory and Applications of the Density Matrix. Oxport : The Clarendon Laboratory. Online at http://iopscience.iop.org/0034-4885/24/1/307.

Fano U. 1957. Description of States in Quantum Mechanics by Density Matrix and Operator Techniques. Washington : National Bureau of Standards. Volume 29, Number 1.

Feynmann R P. 1972. Statistical Mechanics. Reading, MA : Benjamin.

Greiner W, dkk. 1995. Thermodynamics and Statistical Mechanics. New York : Springer.

Karl Blum. 2012. Density Matrix Theory and Applications 3rd Edition. Germany : Springer-Verlag Berlin Heidelberg.

Klem A. D. dan Storer R. G. 1973. The Structure of Quantum Fluids: Helium and Neon. Geelong : Mathematics Department, Gordon Institute of Technology. .Aust. J. Phys., 1973, 26, 43-59.

Kunz, K. S., & Luebbers, R. J. 1993. The Finite Difference Time Domain Method for Electromagneticcs. Boca Raton: CRC press.

Landau L. D. and Lifshitz E. M. 1958. Statistical Physics. London-Paris: Pergamon Press.

March N H, dkk. 1967. The Many-Body Problem in Quantum Mechanics. New York : Dover.

Malone F. D, dkk. 2015. Interaction Picture Density Matrix Quantum Monte Carlo. London: Imperial College London. The Journal of Chemical Physics 143, 044116 (2015).

McWeeny R. 1960. Some Recent Advances in Density Matrix Theory. Keele : Unverstiy College of North Staffordshire. Volume 32, Number 2.

Neumann J V. 1955. Mathematical Foundations of Quantum Mechanics. Princeton : Princeton University Press.

Novac I. 2001. Two Particles in a Box. Singapure : National University of Singapure.

Storer R G. 1968. Path-integral Calculation of The Quantum Statistical Density Matrix for Attractive Coulomb Forces. J. Math. Phys. 9 964.

Sudiarta I W and Geldart D J W. 2007. Solving the Schr¨odinger Equation using The Finite Difference Time Domain Method. J. Phys. A: Math. Theor. 40 1885 http://doi:10.1088/1751–8113/40/8/013.

Sudiarta I W and Geldart D J. 2009. The Finite Difference Time Domain Method for Computing the Single-Particle Density Matrix. J. Phys. A: Math. Theor. 42 (2009) 285002 (20pp). http://doi:10.1088/1751-8113/42/28/285002.

Author Biographies

subhan subhan, Departement of Physics, Universitas Mataram

I Wayan Sudiarta, Departement of Physics, Universitas Mataram

Lily Maysari Angraini, Departement of Physics, Universitas Mataram

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

How to Cite

subhan, subhan, Sudiarta, I. W., & Angraini, L. M. (2018). TWO-PARTICLE THERMAL DENSITY MATRICES IN ONE DIMENSION USING FINITE DIFFERENCE TIME DOMAIN (FDTD) METHOD. Indonesian Physical Review, 1(1), 42. https://doi.org/10.29303/ipr.v1i1.13