GREEN SYNTHESIS OF TIO2 USING ALOE VERA FOR PHOTODEGRADATION IN SASIRANGAN WASTE
Authors
Noor Asyiah , Ahmad Ahmad , Tarisa Ananda , Maulanie Muhaemina , Jannesa Tri Rosadi , Suryajaya Suryajaya , Maya SafitriDOI:
10.29303/ipr.v8i1.381Published:
2024-11-20Issue:
Vol. 8 No. 1 (2025)Keywords:
Green Synthesis, TiO2, Aloe Vera, Photocatalyst, Sasirangan WasteArticles
Downloads
How to Cite
Abstract
Green synthesis of TiO2 has been successfully carried out using aloe vera. Aloe vera extract was mixed with TiCl4 while heated to obtain TiO2 powder. The FTIR spectrum showed a peak at 487.67 cm-¹ corresponding to the Ti-O-Ti functional group, which indicates the formation of TiO2 particles. The XRD results showed that the TiO2 crystals were in the anatase phase. SEM images show that the particles tend to be spherical in shape as in the anatase phase. With the Scherer equation, the size of the TiO2 crystal yielded was around 2.3 nm in diameter. The UV-vis spectrophotometer results showed the blue shift of absorption peak at 368 nm or band gap energy of 3.37 eV. A thin layer of TiO2 was made by using the slip casting method. These thin films were applied to methylene blue and sasirangan waste samples for photodegradation tests. The exposure times used were 15, 30, 45, 60, and 75 minutes. The results showed photodegradation of 38.9 % and 4.5 %, respectively, for methylene blue and sasirangan waste.References
E. Y. Nugraheni and M. Maryanto, “Motif Variety Of Sasirangan On Martapura Riverbank Communities,” 2nd Int. Conf. Art Cult. (ICONARC 2018). pp, vol. 271, no. Iconarc 2018, pp. 25–28, 2019, doi: 10.2991/iconarc-18.2019.60.
A. S. Almu’minin, “Sintesis dan Karakterisasi Film Lapis Tipis TiO2 Sebagai Pendegradasi Pewarna Tekstil Procion Red MX-8B,” Universitas Jember, 2015.
R. S. Khalis, Margareta, Hasbullah, E. Suarso, S. Fitriana, and U. Farisa, “Development Of Sasirangan Liquid Waste Treatment System Using Ozonization Method Using Composite Ceramic Filter Media Based On Water Chestnut (Eleocharis Dulcis),” J. Phys. Its Appl., vol. 6, no. 1, pp. 31–37, 2023.
A. Khair, “Larutan Tawas dan Skala Warna Air Limbah Industri Sasirangan,” J. Skala Kesehat., vol. 8, no. 1, pp. 2–31, 2017.
L. Marisa, A. Mukarramah, and A. I. Fatya, “Pengaruh Variasi Aktivator ZnCl 2 dan NaOH terhadap Efisiensi Adsorpsi Karbon Aktif dari Kayu Cempedak ( Artocarpus Champeden ) sebagai Adsorben dalam Limbah Sasirangan,” Al Kawnu Sci. Local Wisdom J., vol. 3, no. 2, pp. 26–35, 2024, doi: 10.18592/ak.v3i2.12671.
U. Santoso et al., “Pengolahan Limbah Cair Sasirangan Melalui Kombinasi Metode Filtrasi dan Fitoremidiasi Sistem Lahan Basah Buatan Menggunakan Tumbuhan Air yang Berbeda,” EnviroScienteae, vol. 10, no. 3, pp. 157–170, 2014, [Online]. Available: https://ppjp.ulm.ac.id/journal/index.php/es/article/view/1978
H. Aliah and Y. Karlina, “Semikonduktor TiO2 Sebagai Material Fotokatalis Berulang,” J. ISTEK, vol. IX, no. 1, pp. 185–203, 2015.
H. S. Okto and Munasir, “Review: Green Synthesis Nanopartikel TiO2 Sebagai Material Fotokatalis,” J. Inov. Fis. Indones., vol. 12, no. 2, pp. 82–91, 2023.
T. N. Sucahya, N. Permatasari, and A. B. D. Nandiyanto, “Review: Fotokatalis Untuk Pengolahan Limbah Cair,” J. Integritas Proses, vol. 6, no. 1, pp. 1–15, 2016.
S. U. Ramadhani, L. Destiarti, and I. Syahbanu, “Degradasi Bahan Organik Pada Air Gambut Dengan Fotokatalis TiO2 Lapis Tipis,” J. Kim. Khatulistiwa, vol. 6, no. 1, pp. 50–56, 2017.
M. Hikmah and N. Wahyuni, “Sintesis Fotokatalis TiO2 Untuk Degradasi Zat Warna Sintetis Metilen Biru Dengan Bantuan Sinar Tampak,” J. Teknol. Lingkung. Lahan Basah, vol. 11, no. 3, p. 878, 2023, doi: 10.26418/jtllb.v11i3.70903.
W. D. Prastiwi, K. D. Maulana, E. A. P. Wibowo, N. R. Aji, and A. Setyani, “Sintesis dan Karakteristik TiO2 dan SiO2 Serta Aplikasinya Terhadap Kadar Fe Dalam Air Sumur,” J. Ilm. Sains, vol. 17, no. 1, pp. 30–34, 2017.
M. Santiago, D. Rivera, and A. Torres, “Green Synthesis of Titanium Oxide Nanoparticles Using Natural Extracts,” J. Mater. Sci. Chem. Eng., vol. 11, no. 02, pp. 29–40, 2023, doi: 10.4236/msce.2023.112003.
T. M. I. Kojong, H. Aritonang, and H. Kolengan, “Green Syntesis Nanopartikel Perak (Ag) Menggunakan Larutan Daun Rumput Macan ( Lantana Camara L .),” Chem. Prog, vol. 11, no. 2, pp. 46–51, 2018.
K. G. Rao, C. H. Ashok, K. V. Rao, and C. H. S. Chakra, “Green Synthesis Of TiO2 Nanoparticles Using Aloe Vera Extract Green Synthesis Of TiO 2 Nanoparticles Using Aloe Vera Extract,” J. Adv. Res. Phys. Sci., vol. 2, no. 1, pp. 28–34, 2015.
M. S. Hanafy, D. A. A. Fadeel, M. A. Elywa, and N. A. Kelany, “Green Synthesis and Characterization of TiO2 Nanoparticles Using Aloe Vera Extract At Different pH Value,” Sci. J. King Faisal Univ., vol. 21, no. 1, pp. 103–110, 2020, doi: 10.37575/b/sci/2020.
D. V. Wellia et al., “Rind Of Aloe Vera (L.) Burm. f Extract For The Synthesis Of Titanium Dioxide Nanoparticles: Properties and Application In Model Dye Pollutant Degradation,” Case Stud. Chem. Environ. Eng., vol. 9, no. January, pp. 1–9, 2024, doi: 10.1016/j.cscee.2024.100627.
D. A. Abdel Fadeel, M. S. Hanafy, N. A. Kelany, and M. A. Elywa, “Novel greenly synthesized titanium dioxide nanoparticles compared to liposomes in drug delivery: in vivo investigation on Ehrlich solid tumor model,” Heliyon, vol. 7, no. 6, p. e07370, 2021, doi: 10.1016/j.heliyon.2021.e07370.
B. Bulgar, G. Ozkan, O. S. Angi, and G. Ozkan, “Green Synthesis of TiO2 Nanoparticles Using Aloe Vera Extract as Catalyst Support Material and Studies of Their Catalytic Activity In Dehydrogenation of Ethylenediamine Bisborane,” Int. J. Hydrogen Energy, vol. 75, pp. 466–474, 2024.
M. Ohring, Materials Science Of Thin Films: Depositions and Structure. Edisi ke-1. Cambridge: Academic Press, 2022.
N. R. Putri, D. Nofiandi, and K. Khotimah, “Pembuatan dan Karakterisasi Edible Film Dari Pati Bonggol Pisang Kepok (Musa balbisiana Colla),” J. Katalisator, vol. 6, no. 2, pp. 211–222, 2021.
M. Uyun, “Synthesis Of TiO2 Nanoparticles Rutile Using TiCl3 Precursors (Hydrolysis and mineralization Process) and TiCl4 Precursors,” Institut Teknologi Sepuluh Nopember, 2015.
D. P. Mohapatra et al., “Photocatalytic Degradation Of Carbamazepine In Wastewater By Using A New Class Of Whey-Stabilized Nanocrystalline TiO2 and ZnO,” Sci. Total Environ., vol. 485–486, no. 1, pp. 263–269, 2014, doi: 10.1016/j.scitotenv.2014.03.089.
F. Deswardani, Nelson, Nurhidayah, Helga Dwi, and M. F. Afrianto, “Analisis Gugus Fungsi Pada TiO2/Biochar Dengan Spektroskopi FTIR (Fourier Transform Infrared),” J. Online Phys., vol. 5, no. 2, pp. 54–58, 2020, doi: 10.22437/jop.v5i2.9397.
E. T. Bekele, B. A. Gonfa, O. A. Zelekew, H. H. Belay, and F. K. Sabir, “Synthesis Of Titanium Oxide Nanoparticles Using Root Extract Of Kniphofia Foliosa As A Template,” in Characterization, and Its Application on Drug Resistance Bacteria, 2020, pp. 1–10.
S. Srujana et al., “A Comprehensive Study On The Synthesis and Characterization Of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye,” Adsorpt. Sci. Technol., vol. 2022, pp. 1–9, 2022, doi: 10.1155/2022/7244006.
M. Julita, M. Shiddiq, and M. Khair, “Penentuan Energi Celah Pita (Band Gap) Nanopartikel ZnO/Au Hasil Ablasi Laser dalam Cairan,” Periodic, vol. 12, no. 2, p. 71, 2023, doi: 10.24036/periodic.v12i2.118243.
Suryajaya, Habibah, S. Husain, and N. H. Haryanti, “Synthesize Of CdS Nanoparticles Using Liquid-Gas Method,” J. Phys. Conf. Ser., vol. 1816, no. 1, 2021, doi: 10.1088/1742-6596/1816/1/012112.
D. Indriani, H. D. Fahyuan, and N. Ngatijo, “Uji UV-Vis Lapisan TiO2/N2 Untuk Menentukan Band Gap Energi,” J. Online Phys., vol. 3, no. 2, pp. 6–10, 2018, doi: 10.22437/jop.v3i2.5142.
S. Wardiyati, F. Adel, and Yusuf Saeful, “Sintesis Nanokatalis TiO2 Anatase Dalam Larutan Elektrolit Dengan Metode Sol Gel,” J. Sains Mater. Indones. Akreditasi, no. April 2012, p. 44, 2018.
D. Wojcieszak et al., “Effect Of The Structure On Biological and Photocatalytic Activity Of Transparent Titania Thin-Film Coatings,” Mater. Sci. Pol., vol. 34, no. 4, pp. 856–862, 2016, doi: 10.1515/msp-2016-0100.
N. I. AS, V. Zharvan, D. Rizqa, S. Hadi, Y. Gatut, and Darminto, “Pengaruh pH pada Pembentukan Nano-powder TiO2 Fase Anatase dan Sifat Fotokatalisnya,” J. Fis. dan Apl., vol. 11, no. 2, p. 60, 2015, doi: 10.12962/j24604682.v11i2.1056.
S. Ramalingam, “Synthesis of Nanosized Titanium Dioxide (Tio2) By Sol-Gel Method,” Int. J. Innov. Technol. Explor. Eng., vol. 9, no. S2S, pp. 732–735, 2020, doi: 10.35940/ijitee.B1174.1292S219.
D. Fatmawati and A. B. Aritonang, “Sintesis dan Karakterisasi TiO2-Kaolin Menggunakan Metode Sol-Gel,” J. Kim. Khatulistiwa, vol. 8, no. 2, pp. 15–21, 2019, [Online]. Available: https://jurnal.untan.ac.id/index.php/jkkmipa/article/view/36559
P. Praveen, G. Viruthagiri, S. Mugundan, and N. Shanmugam, “Structural, Optical and Morphological Analyses Of Pristine Titanium Di-Oxide Nanoparticles - Synthesized Via Sol-Gel Route,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 117, no. 2017, pp. 622–629, 2014, doi: 10.1016/j.saa.2013.09.037.
Agilent, “The Basics of UV-Vis Spectofotometry,” USA, 2021, pp. 1–36.
T. C. Raganata, H. Aritonang, and E. Suryanto, “Sintesis Fotokatalis Nanopartikel ZnO Untuk Mendegradasi Zat Warna Methylene Blue,” Chem. Prog, vol. 12, no. 2, pp. 54–58, 2019.
R. Tussa’adah and Astuti, “Sintesis Material Fotokatalis TiO2 Untuk Penjernihan Limbah Tekstil,” J. Fis. Unand, vol. 4, no. 1, pp. 91–96, 2015.
D. Li et al., “Pengaruh Ukuran Partikel Terhadap Struktur dan Kinerja Fotokatalik TiO2 yang Diperlakukan Dengan Alkali,” Nanomater., vol. 10, no. 3, p. 546, 2020, doi: 10.3390/nano10030546.
J. Rajkumari et al., “Synthesis Of Titanium Oxide Nanoparticles Using Aloe Barbadensis Mill and Evaluation Of Its Antibiofilm Potential Against Pseudomonas Aeruginosa PAO1,” J. Photochem. Photobiol. B Biol., vol. 201, no. May, p. 111667, 2019, doi: 10.1016/j.jphotobiol.2019.111667.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).