SYNTHESIS AND CHARACTERIZATION OF ZEOLITES FROM COAL FLY ASH WASTE
Authors
Mitra Fitriani , Ramlan Ramlan , Yohanes Edi Gunanto , Jan SetiawanDOI:
10.29303/ipr.v8i1.370Published:
2024-11-14Issue:
Vol. 8 No. 1 (2025)Keywords:
Coal Fly ash, Zeolites, Synthesis, hydrothermal timeArticles
Downloads
How to Cite
Abstract
South Sumatra had coal production through PT Bukit Asam Tbk, which had coal production since 1950. Tanjung Enim Steam Power Plant (PLTU) is the largest coal ash producer because coal is the primary fuel. Coal combustion by-products include coal fly ash (CFA) and coal bottom ash (CBA). The current utilization of the CFA Tanjung Enim Steam Power Plant is for a cement mixture of PT Semen Baturaja and planting media. This work attempts to optimize zeolite synthesis from CFA by examining the effects of hydrothermal duration on reducing coal waste. This research studies the effect of hydrothermal time with time variations of 5, 12, and 24 on the morphology and phase of zeolite obtained. CFA from the Tanjung Enim Steam Power Plant contains SiO₂ and Al₂O₃, which account for 47.7% and 28.7% of the total composition, respectively. The SEM characterization result shows that the synthesized zeolite forms aggregates with a particle size of about 8-15 μm. Based on XRD characterization of CFA hydrothermal time of 5 hours, the dominant phase is the gibbsite phase, but there is a sodalite phase. The 12-hour hydrothermal time showed the formation of quartz, gibbsite, and sodalite phases. The 24-hour hydrothermal time shows that the dominant phase is sodalite, but there are gibbsite and quartz phases. The peak of the quartz phase decreases the longer the hydrothermal time. In this study, the duration of the hydrothermal process affects the formation of the zeolite phase.References
A. P. Afin and B. F. T. Kiono, “Potensi Energi Batubara serta Pemanfaatan dan Teknologinya di Indonesia Tahun 2020 – 2050 : Gasifikasi Batubara,” J. Energi Baru dan Terbarukan, vol. 2, no. 2, pp. 144–122, 2021, doi: 10.14710/jebt.2021.11429.
M. Pataras, J. Arliansyah, E. Kadarsa, N. S. Fatimah, and N. A. K. Diningrum, Material Substitution for Flexible Pavement Using Waste Material Fly Ash and Bottom Ash from Bukit Asam Electric Steam Power Plant, vol. 1. Atlantis Press International BV, 2023. doi: 10.2991/978-94-6463-118-0_24.
H. Zhou et al., “Towards sustainable coal industry: Turning coal bottom ash into wealth,” Sci. Total Environ., vol. 804, p. 149985, 2022, doi: 10.1016/j.scitotenv.2021.149985.
E. ALYATIKAH, Siswo, Riaa Safitri, Tety Wahyuningsih Manurung, and Rendy Muhamad Iqbal, “Chemical characteristic of Fly ash and Bottom ash as potential source for synthesis of Aluminosilicate-based materials,” Rafflesia J. Nat. Appl. Sci., vol. 2, no. 2, pp. 160–166, 2022, doi: 10.33369/rjna.v2i2.23935.
F. Ali, Sri Widayati, and Dudi Nasrudin Usman, “Pemanfaatan Fly Ash dan Bottom Ash (FABA) sebagai Campuran Media Tanam di PT Bukit Asam, Tbk Tanjung Enim Sumatera Selatan,” Bandung Conf. Ser. Min. Eng., vol. 3, no. 2, pp. 500–509, 2023, doi: 10.29313/bcsme.v3i2.8858.
T. Al-dahri, A. A. AbdulRazak, and S. Rohani, “Preparation and characterization of Linde-type A zeolite (LTA) from coal fly ash by microwave-assisted synthesis method: its application as adsorbent for removal of anionic dyes,” Int. J. Coal Prep. Util., vol. 42, no. 7, pp. 2064–2077, 2022, doi: 10.1080/19392699.2020.1792456.
F. Collins, A. Rozhkovskaya, J. G. Outram, and G. J. Millar, “A critical review of waste resources, synthesis, and applications for Zeolite LTA,” Microporous Mesoporous Mater., vol. 291, no. July 2019, p. 109667, 2020, doi: 10.1016/j.micromeso.2019.109667.
P. Wang, Q. Sun, Y. Zhang, and J. Cao, “Hydrothermal synthesis of magnetic zeolite P from fly ash and its properties,” Mater. Res. Express, vol. 7, no. 1, 2019, doi: 10.1088/2053-1591/ab609c.
K. M. Abas and N. A. Fathy, “Sodalite zeolitic materials produced from coal fly ash for removal of congo red dye from aqueous solutions,” Int. J. Environ. Sci. Technol., vol. 21, no. 5, pp. 5165–5184, 2024, doi: 10.1007/s13762-023-05347-0.
C. Belviso, “State-of-the-art applications of fly ash from coal and biomass: A focus on zeolite synthesis processes and issues,” Prog. Energy Combust. Sci., vol. 65, pp. 109–135, 2018, doi: 10.1016/j.pecs.2017.10.004.
R. F. Febrianti, T. A. Zahara, and A. Adhitiyawarman, “Sintesis Zeolit a Berbahan Dasar Abu Terbang (Fly Ash) Limbah Pt. Indonesia Chemical Alumina (Ica) Menggunakan Metode Alkali Hidrotermal (Synthesis of Zeolite a Base on Fly Ash Waste Pt. Indonesia Chemical Alumina (Ica) Using Hydrothermal Alkaline Method),” Indones. J. Pure Appl. Chem., vol. 5, no. 1, p. 28, 2022, doi: 10.26418/indonesian.v5i1.53072.
I. V Joseph, L. Tosheva, and A. M. Doyle, “Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash,” J. Environ. Chem. Eng., vol. 8, no. 4, p. 103895, 2020, doi: https://doi.org/10.1016/j.jece.2020.103895.
S. Kouser, A. Hezam, M. J. N. Khadri, and S. A. Khanum, “A review on zeolite imidazole frameworks: synthesis, properties, and applications,” J. Porous Mater., vol. 29, no. 3, pp. 663–681, 2022, doi: 10.1007/s10934-021-01184-z.
A. Setiawan, A. N. Rahmadania, and N. E. Mayangsari, “ADSORPSI Cu(II) MENGGUNAKAN ZEOLIT SINTESIS KOMBINASI ABU TERBANG DAN ABU DASAR DENGAN VARIASI WAKTU AGING Cu(II) ADSORPTION BY USING SYNTHETIC ZEOLITE COMBINATION OF FLY ASH AND BOTTOM ASH WITH AGING TIME VARIATION,” J. Ris. Teknol. Ind., vol. 15, no. 1, pp. 113–124, 2021.
W. R. Lim, C. H. Lee, and S. Y. Hamm, “Synthesis and characteristics of Na-A zeolite from natural kaolin in Korea,” Mater. Chem. Phys., vol. 261, no. October 2020, pp. 1–11, 2021, doi: 10.1016/j.matchemphys.2021.124230.
N. M. Mahmoodi and M. H. Saffar-Dastgerdi, “Zeolite nanoparticle as a superior adsorbent with high capacity: Synthesis, surface modification and pollutant adsorption ability from wastewater,” Microchem. J., vol. 145, pp. 74–83, 2019, doi: 10.1016/j.microc.2018.10.018.
E. Puspita, M. Naibaho, R. Ramlan, and M. Ginting, “Morphologycal, Elemental Content, and Physical Properties of Cleaned Clinoptitolite Zeolite (10X) Using Sonication and Microwave,” Indones. Phys. Rev., vol. 6, no. 1, pp. 95–104, 2023, doi: 10.29303/ipr.v6i1.204.
M. K. Murukutti and H. Jena, “Synthesis of nano-crystalline zeolite-A and zeolite-X from Indian coal fly ash, its characterization and performance evaluation for the removal of Cs+ and Sr2+ from simulated nuclear waste,” J. Hazard. Mater., vol. 423, no. PA, p. 127085, 2022, doi: 10.1016/j.jhazmat.2021.127085.
N. Kordala and M. Wyszkowski, “Zeolite Properties, Methods of Synthesis, and Selected Applications,” Molecules, vol. 29, no. 5, 2024, doi: 10.3390/molecules29051069.
B. Ahmadi and M. Shekarchi, “Use of natural zeolite as a supplementary cementitious material,” Cem. Concr. Compos., vol. 32, no. 2, pp. 134–141, 2010, doi: 10.1016/j.cemconcomp.2009.10.006.
M. Król, “Zeolites,” vol. 10, no. 7, 2020.
N. R. Mijailovic, B. N. Vasiljevic, M. Rankovic, V. Milanovic, and S. Uskokovic-Markovic, “Environmental and Pharmacokinetic Aspects of Zeolite / Pharmaceuticals Systems — Two Facets of,” Catalysts, vol. 12, no. 8, p. 837, 2022.
A. Khaleque et al., “Zeolite synthesis from low-cost materials and environmental applications: A review,” Environ. Adv., vol. 2, no. October, 2020, doi: 10.1016/j.envadv.2020.100019.
M. Foroughi, A. Salem, and S. Salem, “Characterization of phase transformation from low grade kaolin to zeolite LTA in fusion technique: Focus on quartz melting and crystallization in presence of NaAlO2,” Mater. Chem. Phys., vol. 258, no. October 2020, pp. 1–9, 2021, doi: 10.1016/j.matchemphys.2020.123892.
M. Yoldi, E. G. Fuentes-Ordoñez, S. A. Korili, and A. Gil, “Zeolite synthesis from industrial wastes,” Microporous and Mesoporous Materials, vol. 287, no. March. pp. 183–191, 2019. doi: 10.1016/j.micromeso.2019.06.009.
A. Aziyar and S. Y. Lisha, “Pemanfaatan Limbah Abu Dasar Batubara (Bottom Ash) Sebagai Adsorben Logam Fe Pada Limbah Cair Pltu Teluk Sirih, Sumatera Barat,” J. Aerasi, vol. 1, no. 1, p. 14, 2019, doi: 10.36275/jaerasi.v1i1.137.
P. H. Syaifie, G. Ayu, P. Kusumah, and A. Taufiq, “Abu Sekam Padi Karawang Synthesis and Characterization of Zeolite from Karawang Rice Husk Ash Sintesis Dan Karakterisasi Zeolit Berbahan Dasar Abu Sekam Padi … ( Putri H . Syaifie , dkk .),” Sains dan Terap. Kim., vol. 13, no. 2, pp. 89–98, 2019.
S. Ginting, D. P. Sari, D. A. Iryani, D. Darmansyah, M. Hanif, and H. Wardono, “Sintesis ZeolitT Lynde Type-A (LTA) Dari Zeolit Alam Lampung (ZAL) Menggunakan Metode Step Change Temperature Of Hydrotermal Dengan Variasi SiO2/Al2O3 Diaplikasikan Untuk Dehidrasi Etanol,” J. Chem. Process Eng., vol. 4, no. 1, pp. 31–44, 2019, doi: 10.33536/jcpe.v4i1.324.
K. Rouchalová, D. Rouchalová, V. Čablík, and D. Matýsek, “Microwave-Assisted Hydrothermal Synthesis of Pure-Phase Sodalite (>99 wt.%) in Suspension: Methodology Design and Verification,” Materials (Basel)., vol. 17, no. 1, 2024, doi: 10.3390/ma17010269.
L. Wang, G. Wang, X. Li, and Y. Liu, “Synthesis and characterization of Y-type zeolite from coal fly ash by hydrothermal method,” Chinese J. Environ. Eng., vol. 12, no. 2, pp. 618–624, 2018, doi: 10.12030/j.cjee.201706100.
S. Buzukashvili, R. Sommerville, N. A. Rowson, and K. E. Waters, “An overview of zeolites synthesised from coal fly ash and their potential for extracting heavy metals from industrial wastewater,” Can. Metall. Q., vol. 63, no. 1, pp. 130–152, 2024, doi: 10.1080/00084433.2022.2160576.
E. Kastanaki, A. Rovithi, E. Iatrou, A. Stratakis, and A. Giannis, “Conversion of lignite fly ash into synthetic zeolite by hydrothermal, fusion-hydrothermal, and hydrothermal-sonochemical processes,” J. Chem. Technol. Biotechnol., vol. 99, no. 1, pp. 70–80, 2024, doi: 10.1002/jctb.7511.
Y. Liu, Q. Luo, G. Wang, X. Li, and P. Na, “Synthesis and characterization of zeolite from coal fly ash,” Mater. Res. Express, vol. 5, no. 5, p. 55507, 2018, doi: 10.1088/2053-1591/aac3ae.
Z. Liu, S. Li, L. Li, J. Wang, Y. Zhou, and D. Wang, “One-step high efficiency crystallization of zeolite A from ultra-fine circulating fluidized bed fly ash by hydrothermal synthesis method,” Fuel, vol. 257, no. April, 2019, doi: 10.1016/j.fuel.2019.116043.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).