Vol. 8 No. 1 (2025)
Open Access
Peer Reviewed

PHOTOINACTIVATION OF CANDIDA ALBICANS BIOFILM WITH GREEN LASER MEDIATED BY THE PAPAYA LEAF EXTRACT CHLOROPHYLL

Authors

Rismayani Abdullah , Sri Dewi Astuty , Bidayatul Armynah , Pryandi M Tabaika , Imelda Imelda

DOI:

10.29303/ipr.v8i1.367

Downloads

Received: Jul 20, 2024
Accepted: Oct 14, 2024
Published: Oct 21, 2024

Abstract

This study aims to activate the effectiveness of Photodynamic Inactivation (PDI) as an antibacterial agent by using a green laser and papaya leaf chlorophyll extract to prevent Candida albicans cell death. Papaya leaf extract chlorophyll is known to have potential as a photosensitizer (PS) through its antimicrobial properties and ability to absorb optimal light photons at a wavelength range of 405–680 nm. Activation of chlorophyll molecules with appropriate light produces Reactive Oxygen Species (ROS), which are toxic to pathogenic microbes such as Candida albicans. The research method involves using PDI with a green laser light source and chlorophyll extract on Candida albicans biofilms. Four main treatment groups were applied, negative control (C-), positive controls with 10% (C1+) and 15% chlorophyll (C2+), irradiation for 60, 120, 180, 240, and 300 seconds (L1–L5), and combinations of irradiation with chlorophyll (L1F1–L5F2, where F1 for 10% chlorophyll and F2 for 15% chlorophyll), with measurements performed three times for each treatment. Living Candida albicans cells were detected using the XTT assay staining method. The results showed a significant decrease in activity in all treatment groups. Maximum activity was achieved in the L5F1 and L5F2 treatment groups with inactivation of 80% (p<0.05) and 83% (p<0.05), respectively. This study concludes that high papaya leaf extract chlorophyll concentrations combined with a green laser effectively inhibit Candida albicans biofilm.

Keywords:

chlorophyll of Papaya leaf extract, green laser, Candida albicans, photoantimicrobial

References

F. Alves, A. C. Pavarina, E. G. de O. Mima, A. P. McHale, and J. F. Callan, “Antimicrobial sonodynamic and photodynamic therapies against Candida albicans,†Biofouling, vol. 34, no. 4, pp. 357–367, 2018, doi: 10.1080/08927014.2018.1439935.

S. D. Astuty, Suhariningsih, A. Baktir, and S. D. Astuti, “The efficacy of photodynamic inactivation of the diode laser in inactivation of the Candida albicans biofilms with exogenous photosensitizer of papaya leaf chlorophyll,†J. Lasers Med. Sci., vol. 10, no. 3, pp. 215–224, 2019, doi: 10.15171/jlms.2019.35.

J. Talapko and M. Juzbaši, “Candida albicans — The Virulence Factors and Clinical Manifestations of Infection,†J. Fungi, vol. 7, no. 79, 2021, doi: 10.3390/jof7020079.

B. Pucelik and J. M. Dąbrowski, “Photodynamic inactivation (PDI) as a promising alternative to current pharmaceuticals for the treatment of resistant microorganisms,†in Advances in Inorganic Chemistry, vol. 79, Academic Press Inc., 2022, pp. 65–103. doi: 10.1016/bs.adioch.2021.12.003.

L. Černáková, S. Dižová, and H. Bujdáková, “Employment of methylene blue irradiated with laser light source in photodynamic inactivation of biofilm formed by Candida albicans strain resistant to fluconazole,†Med. Mycol., vol. 55, no. 7, pp. 748–753, 2017, doi: 10.1093/mmy/myw137.

I. U. Macias-Paz, S. Pérez-Hernández, A. Tavera-Tapia, J. P. Luna-Arias, J. E. Guerra-Cárdenas, and E. Reyna-Beltrán, “Candida albicans the main opportunistic pathogenic fungus in humans,†Rev. Argent. Microbiol., vol. 55, no. 2, pp. 189–198, 2023, doi: 10.1016/j.ram.2022.08.003.

P. M. Tabaika, S. D. Astuty, S. Dewang, N. U. Permatasari, and W. Wahiduddin, “The Comparison between Energy Density of Blue and Red Light which Activation Silver Nanoparticles to Inhibition Candida albicans Biofilms,†Trends Sci., vol. 21, no. 8, p. 7702, 2024, doi: 10.48048/tis.2024.7702.

L. M. Dias et al., “The Effect of Sub-Lethal Successive Applications of Photodynamic Therapy on Candida albicans Biofilm Depends on the Photosensitizer,†J. Fungi, vol. 9, no. 1, 2023, doi: 10.3390/jof9010111.

L. Christina Pires Gonçalves, “Photophysical properties and therapeutic use of natural photosensitizers,†J. Photochem. Photobiol., vol. 7, no. June, 2021, doi: 10.1016/j.jpap.2021.100052.

L. Sheng, X. Li, and L. Wang, “Photodynamic inactivation in food systems: A review of its application, mechanisms, and future perspective,†Trends in Food Science and Technology, vol. 124. Elsevier Ltd, pp. 167–181, Jun. 01, 2022. doi: 10.1016/j.tifs.2022.04.001.

T. Voit et al., “Spatial Distribution of a Porphyrin-Based Photosensitizer Reveals Mechanism of Photodynamic Inactivation of Candida albicans,†Front. Med., vol. 8, no. July, pp. 1–9, 2021, doi: 10.3389/fmed.2021.641244.

F. Cieplik et al., “Antimicrobial photodynamic therapy–what we know and what we don’t,†Crit. Rev. Microbiol., vol. 44, no. 5, pp. 571–589, 2018, doi: 10.1080/1040841X.2018.1467876.

V. Ryu, M. Ghoshal, P. Chuesiang, S. Ruiz-Ramirez, L. McLandsborough, and M. G. Corradini, “Mechanisms of microbial photoinactivation by curcumin’s micellar delivery,†Front. Food Sci. Technol., vol. 4, no. March, pp. 1–15, 2024, doi: 10.3389/frfst.2024.1361817.

B. H. D. Panariello, M. I. Klein, F. Alves, and A. C. Pavarina, “DNase increases the efficacy of antimicrobial photodynamic therapy on Candida albicans biofilms,†Photodiagnosis Photodyn. Ther., vol. 27, no. May, pp. 124–131, 2019, doi: 10.1016/j.pdpdt.2019.05.038.

Y. Takeuchi et al., “Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease,†Antibiotics, vol. 12, no. 12, 2023, doi: 10.3390/antibiotics12121676.

M. H. Nasef, S. Y. E. Emam, A. F. Sharaf, and W. A. Allam, “Adjunctive green thermal laser photocoagulation for treatment of resistant infectious keratitis,†Clin. Ophthalmol., 2021, doi: 10.2147/OPTH.S312674.

E. Enggrianti, S. D. Astuty, B. Armynah, B. Bannu, and M. Zain, “The analysis of potency of castor leaf extract (Jatropha Curcas L.) after radiating with a red laser to inhibit the growth of oxygenated Staphylococcus epidermidis biofilm,†in AIP Conference Proceedings, 2023. doi: 10.1063/5.0133318.

S. Ramadhana, S. D. Astuty, B. Bannu, E. Enggrianti, and R. R. Wahyudi, “Physicochemical study of castor leaf (Jatropha curcas L.) and lapaya leaf (Carica papaya L.) extract and their application as photosensitizer agents in antimicrobial photodynamic therapy system to Staphylococcus epidermidis biofilm,†in AIP Conference Proceedings, 2023. doi: 10.1063/5.0133319.

Rosnah. and Haryoto, “Isolasi Dan Identifikasi Ekstrak Etanol Biji Pare,†J. Ners, vol. 8, pp. 1252–1257, 2024.

F. A. Nuari, E. Marliana, and Daniel, “ISOLASI DAN KARAKTERISASI SENYAWA FLAVONOID FRAKSI ASETAT DAUN Macaranga hosei ISOLATION AND CHARACTERIZATION OF FLAVONOID COMPOUNDS FROM ETHYL ACETATE FRACTION OF Macaranga hosei LEAVES,†J. At., vol. 4, no. 1, pp. 17–20, 2019.

M. Balouiri, M. Sadiki, and S. K. Ibnsouda, “Methods for in vitro evaluating antimicrobial activity: A review,†J. Pharm. Anal., vol. 6, no. 2, pp. 71–79, 2016, doi: 10.1016/j.jpha.2015.11.005.

M. H. N. De Zoysa, H. Rathnayake, R. P. Hewawasam, and W. M. D. G. B. Wijayaratne, “Determination of in Vitro Antimicrobial Activity of Five Sri Lankan Medicinal Plants against Selected Human Pathogenic Bacteria,†Int. J. Microbiol., vol. 2019, 2019, doi: 10.1155/2019/7431439.

S. Dewi Astuty, Y. Handayani, R. Abdullah, S. Hajar, and P. M. Tabaika, “Mediated Sensitizer of Nanosilver-Chlorophyll Jatropha Leaf,†Indones. Phys. Rev., vol. 6, no. 1, pp. 132–145, 2023, doi: 10.29303/ip.

G. Garcia de Carvalho et al., “Photodynamic inactivation using a chlorin-based photosensitizer with blue or red-light irradiation against single-species biofilms related to periodontitis,†Photodiagnosis Photodyn. Ther., vol. 31, no. June, p. 101916, 2020, doi: 10.1016/j.pdpdt.2020.101916.

P. T. Dong et al., “Photoinactivation of Catalase Sensitizes Candida albicans and Candida auris to ROS-Producing Agents and Immune Cells,†Adv. Sci., 2022, doi: 10.1002/advs.202104384.

M. C. Huang, M. Shen, Y. J. Huang, H. C. Lin, and C. T. Chen, “Photodynamic inactivation potentiates the susceptibility of antifungal agents against the planktonic and biofilm cells of Candida albicans,†Int. J. Mol. Sci., vol. 19, no. 2, 2018, doi: 10.3390/ijms19020434.

M. M. Kim and A. Darafsheh, “Light Sources and Dosimetry Techniques for Photodynamic Therapy,†Photochem. Photobiol., vol. 96, no. 2, pp. 280–294, 2020, doi: 10.1111/php.13219.

B. Knap et al., “Biomedicine & Pharmacotherapy Photodynamic therapy – mechanisms , photosensitizers and combinations,†vol. 106, no. June, pp. 1098–1107, 2018, doi: 10.1016/j.biopha.2018.07.049.

N. Suvorov, V. Pogorilyy, E. Diachkova, Y. Vasil’ev, A. Mironov, and M. Grin, “Derivatives of natural chlorophylls as agents for antimicrobial photodynamic therapy,†Int. J. Mol. Sci., vol. 22, no. 12, 2021, doi: 10.3390/ijms22126392.

T. P. Kubrak, P. Kołodziej, J. Sawicki, A. Mazur, K. Koziorowska, and D. Aebisher, “Some Natural Photosensitizers and Their Medicinal Properties for Use in Photodynamic Therapy,†Molecules, vol. 27, no. 1192, pp. 1–19, 2022, doi: 10.3390/molecules27041192.

Sanjay Kumar, Akshit Kumar, Rahul Kumar, Vishal Kumar, Neeraj Kumar, and Abhishek Tyagi, “Phytochemical, Pharmacognostical and Pharmacological Activities of Carica papaya,†Int. J. Res. Appl. Sci. Biotechnol., vol. 9, no. 2, pp. 310–315, Apr. 2022, doi: 10.31033/ijrasb.9.2.27.

S. S. Kumar, K. Krishnakumar, and M. John, “Flavonoids from the butanol extract of Carica papaya L. cultivar ‘Red Lady’ leaf using UPLC-ESI-Q-ToF-MS/MS analysis and evaluation of the antioxidant activities of its fractions,†Food Chem. Adv., vol. 1, no. July, p. 100126, 2022, doi: 10.1016/j.focha.2022.100126.

D. M. Musyimi, A. S. Filet, and G. T. Opande, “Comparative Studies of Phytochemical and Antimicrobial Activity oc Carica papaya L. Extracts against Escherichia coli, Staphylococcus aureus and Candida albicans,†Arch. Ecotoxicol., vol. 2, no. 3, pp. 35–42, 2020, doi: 10.36547/ae.2020.2.3.35-42.

J. Ma, H. Shi, H. Sun, J. Li, and Y. Bai, “Antifungal effect of photodynamic therapy mediated by curcumin on Candida albicans biofilms in vitro,†Photodiagnosis Photodyn. Ther., vol. 27, pp. 280–287, 2019, doi: 10.1016/j.pdpdt.2019.06.015.

I. R. Rosari, Z. Zulfian, and T. Sjahriani, “Pengaruh ekstrak daun pepaya (Carica papaya L.) terhadap pertumbuhan Candida albicans,†J. Ilmu Kedokt. Dan Kesehat., vol. 11. Rosari, no. April, p. 100, 2014.

T. Zhang and W. Chen, “The Candida albicans inhibitory activity of the extract from papaya (Carica papaya L.) seed relates to mitochondria dysfunction,†Int. J. Mol. Sci., 2017, doi: 10.3390/ijms18091858.

I. Buchovec, E. VyÄaitÄ—, K. Badokas, E. SužiedelienÄ—, and S. Bagdonas, “Application of Antimicrobial Photodynamic Therapy for Inactivation of Acinetobacter baumannii Biofilms,†Int. J. Mol. Sci., vol. 24, no. 1, Jan. 2023, doi: 10.3390/ijms24010722.

M. Zain, S. D. Astuty, S. Dewang, B. Armynah, R. R. Wahyudi, and S. Ramadhana, “Analysis of the changes power output and energy dose to green laser against OD and MDA values after photoinactivation at Candida Albicans and Staphyloccocus epidermidis associate biofilms,†in AIP Conference Proceedings, 2023. doi: 10.1063/5.0133317.

Author Biographies

Rismayani Abdullah, Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia, 90245.

Sri Dewi Astuty, Department of Physics, Faculty of Mathematics and Natural Science, Universitas Hasanuddin, Makassar

Bidayatul Armynah, Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia, 90245. Indonesia

Pryandi M Tabaika, Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar, Indonesia, 90245. Indonesia

Imelda Imelda, Balai Laboratorium Kesehatan Masyarakat Makassar II

Downloads

Download data is not yet available.

How to Cite

Abdullah, R., Astuty, S. D., Armynah, B., Tabaika, P. M., & Imelda, I. (2024). PHOTOINACTIVATION OF CANDIDA ALBICANS BIOFILM WITH GREEN LASER MEDIATED BY THE PAPAYA LEAF EXTRACT CHLOROPHYLL. Indonesian Physical Review, 8(1), 17–30. https://doi.org/10.29303/ipr.v8i1.367

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.