PHOTOCATALYST ACTIVITY OF MgO FROM BANGKALAN DOLOMITE
Authors
Isna Rahmawati , Lydia RohmawatiDOI:
10.29303/ipr.v5i3.162Published:
2022-07-13Issue:
Vol. 5 No. 3 (2022)Keywords:
Photocatalyst, Dolomite, MgO, UV-VisArticles
Downloads
How to Cite
Abstract
In the industrial sector, water pollution due to dye waste needs special attention because it can harm humans and the environment. A waste-absorbing material with good photocatalytic properties is required to overcome this problem. The photocatalytic properties are owned by metal oxide materials, one of which is Magnesium Oxide (MgO) material. This study aims to analyze the activity level of MgO photocatalytic from Bangkalan dolomite. MgO synthesis was carried out by the leaching method, where UV-Vis characterized the results to determine the photocatalytic ability of MgO against methylene blue (MB). In this characterization, various treatments (sunlight, UV light, and darkroom conditions) were carried out with radiation times of 180, 240, and 300 minutes. The results of the UV-Vis spectrum analysis showed that MgO had a band gap of 4.01 eV. The degradation efficiency of photocatalytic obtained optimal under sunlight, UV light, and in a dark room with a radiation time of 300 minutes at 82%, 42%, and 34%. Thus, the synthesis of MgO in sunlight showed good photocatalytic activity in reducing MB dye to use for processing waste from the dye industry.References
L. Lanjar, F. I. Riayanti, and W. Astuti, “Kesetimbangan Adsorpsi Zat Warna Methyl Violet Oleh Karbon Aktif Berbasis Limbah Daun Nanas (Ananas comosus L),” Metana, vol. 14, no. 2, p. 31, 2018.
S. Wardhani, A. Bahari, and M. Misbah Khunur, “Aktivitas Fotokatalitik Beads TiO2-N/Zeolit-Kitosan Pada Fotodegradasi Metilen Biru (Kajian Pengembanan, Sumber Sinar Dan Lama Penyinaran),” J. Enviromental Eng. Sustain. Technol., vol. 3, no. 2, pp. 78–84, 2016.
T. C. Raganata and H. Aritonang, “Sintesis Fotokatalis Nanopartikel ZnO Untuk Mendegradasi Zat Warna Methylene Blue,” Chem. Prog., vol. 12, no. 2, pp. 54–58, 2019.
E. Riskiani, I. E. Suprihatin, and J. Sibarani, “Fotokatalis Bentonit-Fe2o3 Untuk Degradasi Zat Warna Remazol Brilliant Blue,” Cakra Kim. (Indonesian E-Journal Appl. Chem., vol. 7, no. 1, 2019, [Online]. Available: https://ojs.unud.ac.id/index.php/cakra/article/view/51320.
Y. Zheng, L. Cao, G. Xing, Z. Bai, J. Huang, and Z. Zhang, “Microscale flower-like magnesium oxide for highly efficient photocatalytic degradation of organic dyes in aqueous solution,” RSC Adv., vol. 9, no. 13, pp. 7338–7348, 2019.
M. Venkata Ratnam, C. Karthikeyan, K. Nagamalleswara Rao, and V. Meena, “Magnesium oxide nanoparticles for effective photocatalytic degradation of methyl red dye in aqueous solutions: Optimization studies using response surface methodology,” Mater. Today Proc., vol. 26, no. 2, pp. 2308–2313, 2020.
E. Wahyu and P. Dini, “Degradasi metilen blue menggunakan fotokatalis ZnO-zeolit,” Chem. Prog., vol. 7, no. 1, pp. 29–33, 2014.
A. Aprilia, D. Putri Hanavi, L. Safriani, A. Bahtiar, S. Suryaningsih, and R. Rahayu Dwi Agustini, “Sifat Fotokatalitik Serbuk ZnO terdoping Aluminium dalam Mendegradasi Larutan Metil Biru,” J. Ilmu dan Inov. Fis., vol. 4, no. 1, pp. 34–45, 2020.
Y. Jiang et al., “Magnetic chitosan-graphene oxide composite for anti-microbial and dye removal applications,” Int. J. Biol. Macromol., vol. 82, pp. 702–710, 2016.
M. Sakar, R. Mithun Prakash, and D. Trong-On, “Insights into the TiO2-based photocatalytic systems and their mechanisms,” Catalysts, vol. 9, no. 8, p. 680, 2019.
C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, and C. Pan, “Present Perspectives of Advanced Characterization Techniques in TiO2-Based Photocatalysts,” ACS Appl. Mater. Interfaces, vol. 9, no. 28, pp. 23265–23286, 2017.
O. Długosz and M. Banach, “Continuous synthesis of photocatalytic nanoparticles of pure ZnO and ZnO modified with metal nanoparticles,” J. Nanostructure Chem., vol. 11, no. 4, pp. 601–617, 2021.
P. Dong, G. Hou, X. Xi, R. Shao, and F. Dong, “WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications,” Environ. Sci. Nano, vol. 4, no. 3, pp. 539–557, 2017.
K. Kato and T. Shirai, “Highly efficient water purification by WO3-based homo/heterojunction photocatalyst under visible light,” J. Alloys Compd., vol. 901, p. 16343, 2022.
S. Haseena et al., “Study on photocatalytic and antibacterial properties of phase pure Fe2O3 nanostructures synthesized using Caralluma Fimbriata and Achyranthes Aspera leaves,” Optik (Stuttg)., vol. 203, p. 164047, 2020.
P. Sharma, R. Kumar, S. Chauhan, D. Singh, and M. S. Chauhan, “Facile growth and characterization of α-Fe2O3 nanoparticles for photocatalytic degradation of methyl orange,” J. Nanosci. Nanotechnol., vol. 14, no. 8, pp. 6153–6157, 2014.
R. Sathyamoorthy and K. Mageshwari, “Synthesis of hierarchical CuO microspheres : Photocatalytic and antibacterial activities,” Phys. E Low-dimensional Syst. Nanostructures, vol. 47, pp. 157–161, 2013, doi: 10.1016/j.physe.2012.10.019.
M. I. Khan et al., “Green synthesis of magnesium oxide nanoparticles using Dalbergia sissoo extract for photocatalytic activity and antibacterial efficacy,” Appl. Nanosci., vol. 10, no. 7, pp. 2351–2364, 2020.
K. Mageshwari, S. S. Mali, R. Sathyamoorthy, and P. S. Patil, “Template-free synthesis of MgO nanoparticles for effective photocatalytic applications,” Powder Technol., vol. 249, pp. 456–462, 2013.
A. I. Casado, A. M. Alonso-Zarza, and Á. La Iglesia, “Morphology and origin of dolomite in paleosols and lacustrine sequences. Examples from the Miocene of the Madrid Basin,” Sediment. Geol., vol. 312, pp. 50–62, 2014.
Solihin, T. Arini, and E. Febriana, “Pengaruh Temperatur Nukleasi Terhadap Geometri Produk Magnesium Karbonat dari Bahan Baku Dolomit Madura,” J. Maj. Metal., vol. 28, no. 2, pp. 83–88, 2013.
E. Wulancahayani and L. Rohmawati, “ANALISIS UKURAN KRISTALIN SERBUK CaCO3 /MgO HASIL KALSINASI DOLOMIT,” J. Inov. Fis. Indones. Vol., vol. 09, pp. 21–24, 2020.
D. Saputri and L. Rohmawati, “Sintesis Magnesium Oksida (MgO) dari Dolomit Bangkalan dengan Metode Leaching,” J. Teor. dan Apl. Fis., vol. 9, no. 2, p. 203, 2021.
S. A. Kumar, M. Jarvin, S. Sharma, A. Umar, S. S. R. Inbanathan, and A. K. Nayak, “Facile and Green Synthesis of MgO Nanoparticles for the Degradation of Victoria Blue Dye under UV Irradiation and their Antibacterial Activity,” ES Food Agrofor., vol. 5, pp. 14–19, 2021.
Z. Jannah and L. Rohmawati, “Sintesis Nanokristalin CaCO 3 /MgO Untuk Aplikasi Bahan Antibakteri,” J. Inov. Fis. Indones., vol. 07, pp. 11–14, 2018.
I. Khan, K. Saeed, and I. Khan, “Nanoparticles: Properties, applications and toxicities,” Arab. J. Chem., vol. 12, no. 7, pp. 908–931, 2019.
C. K. Rastogi, S. Saha, S. Sivakumar, R. G. S. Pala, and J. Kumar, “Kinetically stabilized aliovalent europium-doped magnesium oxide as a UV sensitized phosphor,” Phys. Chem. Chem. Phys., vol. 17, no. 6, pp. 4600–4608, 2015.
J. Jeevanandam, Y. S. Chan, and M. K. Danquah, “Calcination-Dependent Morphology Transformation of Sol-Gel- Synthesized MgO Nanoparticles,” ChemistrySelect, vol. 2, no. 32, pp. 10393–10404, 2017.
G. Balakrishnan, R. Velavan, K. Mujasam Batoo, and E. H. Raslan, “Microstructure, optical and photocatalytic properties of MgO nanoparticles,” Results Phys., vol. 16, p. 103013, 2020.
M. Kandiban, P. Vigneshwaran, and V. I. Potheher, “Synthesis and Characterization of MgO Nanoparticles for Photocatalytic Applications,” Proc. Natl. Conf. Adv. Cryst. Growwth Nanotechnol., 2015, [Online]. Available: https://www.researchgate.net/publication/285525755_SYNTHESIS_AND_CHARACTERIZATION_OF_MgO_NANOPARTICLES_FOR_PHOTOCATALYTIC_APPLICATIONS.
K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan, “Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance,” J. Photochem. Photobiol. B Biol., vol. 190, pp. 8–20, 2019.
L. S. Reddy Yadav, K. Lingaraju, K. Manjunath, G. K. Raghu, K. H. Sudheer Kumar, and G. Nagaraju, “Synergistic effect of MgO nanoparticles from electrochemical sensing, photocatalytic-dye degradation and antibacterial activity,” Mater. Res. Express, vol. 4, no. 2, 2017.
K. M. Ellyana, K. L. Rahayu, R. Febriastuti, and A. Haris, “Cassava Skin Usage (Manihot esculenta L.) as Photocatalyst for Degradation of Methylene Blue in the River of Textile Industrial Zone,” J. Kim. Sains dan Apl., vol. 21, no. 4, pp. 232–236, 2018.
B. Szczepanik, “Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review,” Appl. Clay Sci., vol. 141, pp. 227–239, 2017.
V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments,” J. Photochem. Photobiol. C Photochem. Rev., vol. 25, pp. 1–29, 2015.
N. Qutub, P. Singh, S. Sabir, S. Sagadevan, and W. C. Oh, “Enhanced photocatalytic degradation of Acid Blue dye using CdS/TiO2 nanocomposite,” Sci. Rep., vol. 12, no. 1, pp. 1–18, 2022.
J. Moma, and J. Baloyi, "Modified Titanium Dioxide for Photocatalytic Applications", in Photocatalysts - Applications and Attributes. London, United Kingdom: IntechOpen, 2018 [Online]. Available: https://www.intechopen.com/chapters/62303 .
Y. D. Lestari, S. Wardhani, and M. M. Khunur, “Degradasi Methylene Blue Menggunakan Fotokatalis TiO2- N/Zeolit Dengan Sinar Matahari,” J. Ilmu Kim. Univ. Brawijaya, vol. 1, no. 1, pp. 592–598, 2015, [Online]. Available: http://kimia.studentjournal.ub.ac.id/index.php/jikub/article/view/552.
A. Ahmad, M. Khan, S. Khan, R. Luque, T. M. Almutairi, and A. M. Karami, “Bio-construction of MgO nanoparticles using Texas sage plant extract for catalytical degradation of methylene blue via photocatalysis,” Int. J. Environ. Sci. Technol., 2022.
K. Karthik, S. Dhanuskodi, S. Prabu Kumar, C. Gobinath, and S. Sivaramakrishnan, “Microwave assisted green synthesis of MgO nanorods and their antibacterial and anti-breast cancer activities,” Mater. Lett., vol. 206, pp. 217–220, 2017.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).