Vol. 5 No. 2 (2022)
Open Access
Peer Reviewed

ANALYSIS OF THE SIGNAL TO NOISE RATIO IN USE OF 15% KVP RULE METHOD IN THE RADIOGRAPHY EXAMINATION SUPINE AP CHEST

Authors

Shinta Gunawati Sutoro , Muhammad Irsal , Tri Asih Budiati , Andri Yansyah

DOI:

10.29303/ipr.v5i2.141

Downloads

Received: Feb 09, 2022
Accepted: May 10, 2022
Published: May 15, 2022

Abstract

The exposure factor is one of the important parameters in optimizing the radiographic examination. This study aimed to analyze the value of the Signal To Noise Ratio (SNR) against the use of the 15% kV rule method in the examination of Chest AP Supine. Descriptive quantitative research method conducted in the laboratory of the Department of diagnostic imaging and radiotherapy, Health Polytechnic of the Ministry of Health, Jakarta 2, using computer radiography, X-rays, piranha radiation detectors, and anthropomorphic phantoms, with statistical analysis of the Pearson test to determine the level of relationship between SNR and Exposure Index (EI). Against the 15% kV rule method, then the one-way ANOVA test to determine the effect of the 15% method on changes in value. The results of the Pearson test obtained a p-value of 0.820 with a strong relationship between SNR and EI against the 15% kV method. Therefore, using an exposure factor of 15% kV rule method makes it possible to control the SNR and EI values. The one way ANOVA test has a p-value of 0.943, so there is no significant difference in the SNR value to changes in the exposure factor with the 15% kV rule method so that the optimization of the exposure factor with the 15% kV rule method can reduce the radiation dose while maintaining the image quality radiographic

Keywords:

Signal to Noise Ratio, 15% kV Rule Method, Supine AP Chest

References

Compagnone, G.; Pagan, L.; Baleni, M. C.; Calzolaio, F. L.; Barozzi, L.; Bergamini, C. (2008). Patient dose in digital projection radiography. , 129(1), 135-137. doi:10.1093/rpd/ncn013

Mc Fadden, S.; Roding, T.; de Vries, G.; Benwell, M.; Bijwaard, H.; Scheurleer, J. (2017). Digital imaging and radiographic practise in diagnostic radiography: An overview of current knowledge and practice in Europe. Radiography. S1078817417301712–. doi:10.1016/j.radi.2017.11.004

Sandborg, Michael; Tingberg, Anders; Ullman, Gustaf; Dance, David R.; Alm Carlsson, Gudrun (2006). Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Medical Physics, 33(11), 4169–. doi:10.1118/1.2362871

Chan, C.T.P.; Fung, K.K.L. (2015). Dose optimization in pelvic radiography by air gap method on CR and DR systems – A phantom study. Radiography, 21(3), 214–223. doi:10.1016/j.radi.2014.11.005

Kyprianou, Iacovos S.; Ganguly, Arundhuti; Rudin, Stephen; Bednarek, Daniel R.; Gallas, Brandon D.; Myers, Kyle J.; Eckstein, Miguel P.; Jiang, Yulei (2005). SPIE Proceedings [SPIE Medical Imaging - San Diego, CA (Saturday 12 February 2005)] Medical Imaging 2005: Image Perception, Observer Performance, and Technology Assessment - Efficiency of the human observer compared to an ideal observer based on a generalized NEQ which incorporates scatter and geometric unsharpness: evaluation with a 2AFC experiment. 5749, 251–262. doi:10.1117/12.595870

Ekpo, Ernest U.; Hoban, Alishja C.; McEntee, Mark F. (2014). Optimisation of direct digital chest radiography using Cu filtration. Radiography. 20(4), 346–350. doi:10.1016/j.radi.2014.07.001

Zhonghua Sun; Chenghsun Lin; YeuSheng Tyan; Kwan-Hoong Ng (2012). Optimization of chest radiographic imaging parameters: a comparison of image quality and entrance skin dose for digital chest radiography systems. 36(4). doi:10.1016/j.clinimag.2011.09.006

Metaxas, Vasileios I; Messaris, Gerasimos A; Lekatou, Aristea N; Petsas, Theodore G; Panayiotakis, George S (2018). Patient Dose In Digital Radiography Utilising Bmi Classification. Radiation Protection Dosimetry, doi:10.1093/rpd/ncy194

Roch, Patrice; Célier, David; Dessaud, Cécile; Etard, Cécile (2018). Using diagnostic reference levels to evaluate the improvement of patient dose optimisation and the influence of recent technologies in radiography and computed tomography. European Journal of Radiology, 98, 68–74. doi:10.1016/j.ejrad.2017.11.002

N.O. Egbe; B. Heaton; P.F. Sharp (2010). A simple phantom study of the effects of dose reduction (by kVp increment) below current dose levels on CR chest image quality. , 16(4), 327–332. doi:10.1016/j.radi.2010.05.004

Busch, H.P. (2000). Need for New Optimisation Strategies in CR and Direct Digital Radiography. Radiation Protection Dosimetry, 90(1), 31–33. doi:10.1093/oxfordjournals.rpd.a033139

Fauber, T. (2016). Image Formation and Radiographic Quality. In Radiographic Imaging and Exposure. Elsevier Inc.

Nicholas Bond (1999). Optimization of image quality and patient exposure in chest radiography. 5(1), 29–31. doi:10.1016/s1078-8174(99)90006-8

Gibson, D. J., & Davidson, R. A. (2012). Exposure Creep in Computed Radiography. Academic Radiology, 19(4), 458–462. doi:10.1016/j.acra.2011.12.003

Egbe, N. O., Heaton, B., & Sharp, P. F. (2010). Application of a simple phantom in assessing the effects of dose reduction on image quality in chest radiography. Radiography, 16(2), 108–114. doi:10.1016/j.radi.2009.09.007

Dalah, E. Z. (2019). Quantifying dose-creep for Skull and chest radiography using dose area product and entrance surface dose: Phantom study. Radiation Physics and Chemistry. doi:10.1016/j.radphyschem.201903.035

Seeram, E., Davidson, R., Bushong, S., & Swan, H. (2013). Radiation dose optimization research: Exposure technique approaches in CR imaging – A literature review. Radiography, 19(4), 331–338. doi:10.1016/j.radi.2013.07.005

Seeram, E. (2014). The New Exposure Indicator for Digital Radiography. Journal of Medical Imaging and Radiation Sciences, 45(2), 144–158. doi:10.1016/j.jmir.2014.02.004

Hinojos-Armendáriz, V. I., Mejía-Rosales, S. J., & Franco-Cabrera, M. C. (2018). Optimisation of radiation dose and image quality in mobile neonatal chest radiography. Radiography, 24(2), 104–109. doi:10.1016/j.radi.2017.09.004

Seibert, J. A., & Morin, R. L. (2011). The standardized exposure index for digital radiography: an opportunity for optimization of radiation dose to the pediatric population. Pediatric Radiology, 41(5), 573–581. doi:10.1007/s00247-010-1954-6

Butler, M. L., Rainford, L., Last, J., & Brennan, P. C. (2010). Are exposure index values consistent in clinical practice? A multi-manufacturer investigation. Radiation Protection Dosimetry, 139(1-3), 371–374. doi:10.1093/rpd/ncq094

AAPM. Acceptance Testing and Quality Control of Photostimulable Storage Phosphor Imaging Systems. 93. 2006. 21–22 p

Muhammad Irsal; (2021). Exposure Factor Control with Exposure Index Guide As Optimizing Efforts in Chest Pa Examination. Journal of Physics: Conference Series. doi:10.1088/1742-6596/1842/1/012059

Seeram E, Davidson R, Bushong S, Swan H. Optimizing the exposure indicator as a dose management strategy in computed radiography. Radiol Technol. 2016;87(4):380–91.

Seeram E, Davidson R, Bushong S, Swan H. (2013). Radiation dose optimization research: Exposure technique approaches in CR imaging - A literature review. Radiography 19(4):331–8.

Author Biographies

Shinta Gunawati Sutoro, Poltekkes Kemenkes Jakarta 2

Muhammad Irsal, Poltekkes Kemenkes Jakarta 2

Tri Asih Budiati, Rumah sakit pusat pertamina

Andri Yansyah, Global promedika servis

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

How to Cite

Sutoro, S. G., Irsal, M., Budiati, T. A., & Yansyah, A. (2022). ANALYSIS OF THE SIGNAL TO NOISE RATIO IN USE OF 15% KVP RULE METHOD IN THE RADIOGRAPHY EXAMINATION SUPINE AP CHEST. Indonesian Physical Review, 5(2), 107–115. https://doi.org/10.29303/ipr.v5i2.141

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.