IMPEDANCE ANALYSIS FOR FOUR TYPES OF MINERAL WATER AND AQUADES USING ELECTRICAL IMPEDANCE SPECTROSCOPY (EIS) AT FREQUENCIES OF 1 Hz - 50 kHz
Authors
Darmawati Wulandari , Ahmad Zarkasi , Kholis NurhanafiDOI:
10.29303/ipr.v7i1.269Published:
2023-12-26Issue:
Vol. 7 No. 1 (2024)Keywords:
Mineral water, Aquades, Warburg, Randles, EIS, ImpedanceArticles
Downloads
How to Cite
Abstract
The Electrical Impedance Spectroscopy (EIS) method can be used to identify minerals in mineral water. The EIS method measures the impedance of a material by injecting alternating current in a certain frequency range, which is non-invasive and non-destructive. This study aims to analyze the impedance of mineral water and aquades based on the influence of the dissolved content using EIS equipment that provides flexibility in adjusting the desired frequency spectrum. The study used a frequency range from 1 Hz to 50 kHz with a four-electrode configuration. The measurement graph results were analyzed using Bode graph with impedance plot and phase shift angle to determine the impedance characteristics of mineral water. Equivalent circuit modeling helped to identify the electrochemical properties of materials such as the Warburg circuit, Constant Phase Element (CPE), and Randles circuit. The results show that the aquades has a higher impedance compared to the four mineral waters. Additionally, the four mineral waters exhibit varying impedances, attributed to their respective mineral content. Mineral water is characterized by an impedance that is dominated by Warburg impedance (Zw) at low frequencies, charge transfer resistance (Rct) and double layer capacitance (Cdl) at middle frequencies, and electrolyte resistance at high frequencies. However, the impedance of aquades dominated by electrolyte resistance (Re) at low frequency and Re+Rct at high frequency.References
N. D. Chau and B. Tomaszewska, Mineral and Bottled Water as Natural Beverages. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-815272-0.00001-5.
C. Voica, G. Cristea, and I. Feher, Multielement and Isotopic Characterization of Bottled Mineral Waters on the Romanian Market. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-815272-0.00005-2.
S. Quattrini, B. Pampaloni, and M. L. Brandi, “Natural mineral waters: chemical characteristic and health effects,” Hippel’s Briefe von 1775 bis 1785, vol. 13, no. 3, pp. 173–180, 2012, doi: 10.1515/9783110819700.306.
M. Guadayol, M. Cortina, J. M. Guadayol, and J. Caixach, “Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters,” Water Res., vol. 92, pp. 149–155, 2016, doi: 10.1016/j.watres.2016.01.016.
B. Jain, A. K. Singh, and M. A. B. H. Susan, The World Around Bottled Water. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-815272-0.00002-7.
I. L. Bulia and J. Enzweiler, “The hydrogeochemistry of bottled mineral water in São Paulo state, Brazil,” J. Geochemical Explor., vol. 188, no. 2017, pp. 43–54, 2018, doi: 10.1016/j.gexplo.2018.01.007.
P. Dobosy, Á. Illés, A. Endrédi, and G. Záray, “Lithium concentration in tap water, bottled mineral water, and Danube River water in Hungary,” Sci. Rep., vol. 13, no. 1, p. 12543, 2023, doi: 10.1038/s41598-023-38864-6.
I. Chmielewska, S. Chalupnik, M. Wysocka, and A. Smolinski, “Radium measurements in bottled natural mineral-, spring- And medicinal waters from Poland,” Water Resour. Ind., vol. 24, no. June, 2020, doi: 10.1016/j.wri.2020.100133.
D. Di Giuseppe, “Comparison of the mineral element content of public drinking fountains and bottled water: A case study of Ferrara city,” Geosci., vol. 7, no. 3, 2017, doi: 10.3390/geosciences7030076.
R. Ranjbar, F. Khamesipour, N. Jonaidi-Jafari, and E. Rahimi, “Helicobacter pylori in bottled mineral water: Genotyping and antimicrobial resistance properties,” BMC Microbiol., vol. 16, no. 1, pp. 1–10, 2016, doi: 10.1186/s12866-016-0647-1.
E. Schnug, S. H. Haneklaus, U. Hundhausen, F. Knolle, F. Jacobs, and M. Birke, Significance of Geographical, Hydrogeological, and Hydrogeochemical Origin for the Elemental Composition of Bottled German Mineral Waters. Elsevier Inc., 2019. doi: 10.1016/b978-0-12-815272-0.00011-8.
C. S. Widodo, H. Sela, and D. R. Santosa, “The effect of NaCl concentration on the ionic NaCl solutions electrical impedance value using electrochemical impedance spectroscopy methods,” AIP Conf. Proc., vol. 2021, no. 2018, 2018, doi: 10.1063/1.5062753.
A. R. C. Bredar, A. L. Chown, A. R. Burton, and B. H. Farnum, “Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications,” ACS Appl. Energy Mater., vol. 3, no. 1, pp. 66–98, 2020, doi: 10.1021/acsaem.9b01965.
F. Ciucci, “Modeling electrochemical impedance spectroscopy,” Curr. Opin. Electrochem., vol. 13, pp. 132–139, 2019, doi: 10.1016/j.coelec.2018.12.003.
W. Choi, H. C. Shin, J. M. Kim, J. Y. Choi, and W. S. Yoon, “Modeling and applications of electrochemical impedance spectroscopy (Eis) for lithium-ion batteries,” J. Electrochem. Sci. Technol., vol. 11, no. 1, pp. 1–13, 2020, doi: 10.33961/jecst.2019.00528.
J. Kretzschmar and F. Harnisch, “Electrochemical impedance spectroscopy on biofilm electrodes – conclusive or euphonious?,” Curr. Opin. Electrochem., vol. 29, p. 100757, 2021, doi: 10.1016/j.coelec.2021.100757.
V. Balasubramani, S. Chandraleka, T. S. Rao, R. Sasikumar, M. R. Kuppusamy, and T. M. Sridhar, “Review—Recent Advances in Electrochemical Impedance Spectroscopy Based Toxic Gas Sensors Using Semiconducting Metal Oxides,” J. Electrochem. Soc., vol. 167, no. 3, p. 037572, 2020, doi: 10.1149/1945-7111/ab77a0.
J. R. Macdonald and W. B. Johnson, “Fundamentals of Impedance Spectroscopy 1.1 BACKGROUND, BASIC DEFINITIONS, AND HISTORY 1.1.1 The Importance of Interfaces,” 2018.
S. Anantharaj and S. Noda, “Appropriate Use of Electrochemical Impedance Spectroscopy in Water Splitting Electrocatalysis,” ChemElectroChem, vol. 7, no. 10, pp. 2297–2308, 2020, doi: 10.1002/celc.202000515.
T. Pajkossy and R. Jurczakowski, “Electrochemical impedance spectroscopy in interfacial studies,” Curr. Opin. Electrochem., vol. 1, no. 1, pp. 53–58, 2017, doi: 10.1016/j.coelec.2017.01.006.
L. A. Buscaglia, O. N. Oliveira, and J. P. Carmo, “Roadmap for Electrical Impedance Spectroscopy for Sensing: A Tutorial,” IEEE Sens. J., vol. 21, no. 20, pp. 22246–22257, 2021, doi: 10.1109/JSEN.2021.3085237.
N. O. Laschuk, E. B. Easton, and O. V. Zenkina, “Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry,” RSC Adv., vol. 11, no. 45, pp. 27925–27936, 2021, doi: 10.1039/d1ra03785d.
M. Van Haeverbeke, M. Stock, and B. De Baets, “Equivalent Electrical Circuits and Their Use Across Electrochemical Impedance Spectroscopy Application Domains,” IEEE Access, vol. 10, pp. 51363–51379, 2022, doi: 10.1109/ACCESS.2022.3174067.
N. Meddings et al., “Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review,” J. Power Sources, vol. 480, no. September, 2020, doi: 10.1016/j.jpowsour.2020.228742.
M. Esser, G. Rohde, and C. Rehtanz, “Electrochemical Impedance Spectroscopy Setup based on Standard Measurement Equipment,” J. Power Sources, vol. 544, 2022.
K. Almuhammadi, T. K. Bera, and G. Lubineau, “Electrical impedance spectroscopy for measuring the impedance response of carbon-fiber-reinforced polymer composite laminates,” Compos. Struct., vol. 168, pp. 510–521, 2017, doi: 10.1016/j.compstruct.2017.02.075.
D. V. Ribeiro and J. C. C. Abrantes, “Application of electrochemical impedance spectroscopy (EIS) to monitor the corrosion of reinforced concrete: A new approach,” Constr. Build. Mater., vol. 111, pp. 98–104, 2016, doi: 10.1016/j.conbuildmat.2016.02.047.
M. A. Zabara and B. Ulgut, “Electrochemical Impedance Spectroscopy based voltage modeling of lithium Thionyl Chloride (Li∖SOCl2) primary battery at arbitrary discharge,” Electrochim. Acta, vol. 334, p. 135584, 2020, doi: 10.1016/j.electacta.2019.135584.
V. Sunil, B. Pal, I. Izwan Misnon, and R. Jose, “Characterization of supercapacitive charge storage device using electrochemical impedance spectroscopy,” Mater. Today Proc., vol. 46, no. xxxx, pp. 1588–1594, 2020, doi: 10.1016/j.matpr.2020.07.248.
S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nat. Rev. Methods Prim., vol. 1, no. 1, 2021, doi: 10.1038/s43586-021-00039-w.
L. Fan and Z. Miao, “Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis?,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 3312–3315, 2020, doi: 10.1109/TPWRS.2020.2996014.
J. Huang, Z. Li, B. Y. Liaw, and J. Zhang, “Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations,” J. Power Sources, vol. 309, pp. 82–98, 2016, doi: 10.1016/j.jpowsour.2016.01.073.
H. H. Hernandez et al., “Electrochemical Impedance Spectroscopy (EIS): A Revies Study of Basic Aspect of the Corrosion Mechanism Apllied to Steels,” Books on Demand, vol. 1, no. 1, p. 6, 2020, [Online]. Available: http://dx.doi.org/10.5772/intechopen.87884
M. Grossi and B. Riccò, “Electrical impedance spectroscopy (EIS) for biological analysis and food characterization: A review,” J. Sensors Sens. Syst., vol. 6, no. 2, pp. 303–325, 2017, doi: 10.5194/jsss-6-303-2017.
Z. Lukács and T. Kristóf, “A generalized model of the equivalent circuits in the electrochemical impedance spectroscopy,” Electrochim. Acta, vol. 363, 2020, doi: 10.1016/j.electacta.2020.137199.
G. Barbero and I. Lelidis, “Analysis of Warburg’s impedance and its equivalent electric circuits,” Phys. Chem. Chem. Phys., vol. 19, no. 36, pp. 24934–24944, 2017, doi: 10.1039/c7cp04032f.
H. S. Magar, R. Y. A. Hassan, and A. Mulchandani, “Electrochemical impedance spectroscopy (Eis): Principles, construction, and biosensing applications,” Sensors, vol. 21, no. 19, 2021, doi: 10.3390/s21196578.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).