CHARACTERIZATION AND ELECTROCHEMICAL BEHAVIOUR OF BORON DOPED DIAMOND IN DETECTING AMODIAQUINE
Authors
Hizkia Alpha Dewanto , Jatmoko Awali , Fadli Hizam , Keysi Devain Destiny , Irsyad Al Habib , Najwa Nabila , Murni Handayani , Yunita TrianaDOI:
10.29303/ipr.v7i3.345Published:
2024-09-17Issue:
Vol. 7 No. 3 (2024)Keywords:
Amodiaquine, Boron Doped Diamond, Limit of Detection, SensorArticles
Downloads
How to Cite
Abstract
Amodiaquine (AQ) is an essential medicine in treating malaria. Yet, the threat of drug resistance and toxicity necessitates accurate measurement of AQ in the human body. This research determines the amodiaquine (AQ) detection performance of boron-doped diamond (BDD) working electrodes. The study utilizes different pulse velocity (DPV) methods to analyze the AQ reaction behavior of BDD. The research demonstrates the reaction mechanism: Two electrons are transferred, and irreversible oxidation reactions occur. The sensor limit of detection (LOD) is measured to determine the performance of working electrodes for AQ detection. The LOD is calculated between 0.0645 µM and 0.3 µM, and changes in analytical concentrations relative to maximum current are calculated. The LOD of the BDD electrode is 1.5×10–8 M, lower than previous research on AQ sensors, showing the effectivity of the BDD electrode as an AQ sensor.References
C. S. K. Rajapakse et al., “Synthesis of New 4-Aminoquinolines and Evaluation of Their In Vitro Activity against Chloroquine-Sensitive and Chloroquine-Resistant Plasmodium falciparum,” PLoS One, vol. 10, no. 10, p. e0140878, Oct. 2015, doi: 10.1371/JOURNAL.PONE.0140878.
S. Karakaya, B. Kartal, and Y. Dilgin, “Ultrasensitive voltammetric detection of an antimalarial drug (amodiaquine) at a disposable and low-cost electrode,” Monatsh Chem, vol. 151, no. 7, pp. 1019–1026, Jul. 2020, doi: 10.1007/S00706-020-02637-Y/METRICS.
R. R. Kinansi and R. Mayasari, “Pengobatan malaria kombinasi artemisinin (ACT) di provinsi Papua Barat tahun 2013,” BALABA: Jurnal Litbang Pengendalian Penyakit Bersumber Binatang, 2017, doi: 10.22435/blb.v13i1.255.
G. O. Adjei, B. Q. Goka, O. P. Rodrigues, L. C. G. Hoegberg, M. Alifrangis, and J. A. L. Kurtzhals, “Amodiaquine-associated adverse effects after an inadvertent overdose and after a standard therapeutic dose,” ajol.infoGO Adjei, BQ Goka, OP Rodrigues, LCG Høgberg, M Alifrangis, JAL KurtzhalsGhana Medical Journal, 2009•ajol.info, vol. 43, 2009, Accessed: Aug. 15, 2024. [Online]. Available: https://www.ajol.info/index.php/gmj/article/view/55340
Y. Tang, Q. Wu, F. A. Beland, S. Chen, and J. L. Fang, “Apoptosis contributes to the cytotoxicity induced by amodiaquine and its major metabolite N-desethylamodiaquine in hepatic cells,” Toxicology in Vitro, vol. 62, p. 104669, Feb. 2020, doi: 10.1016/J.TIV.2019.104669.
T. Rasheed et al., “Environmental threatening concern and efficient removal of pharmaceutically active compounds using metal-organic frameworks as adsorbents,” Environ Res, vol. 185, p. 109436, Jun. 2020, doi: 10.1016/J.ENVRES.2020.109436.
H. Herlina, M. A. Zulfikar, and B. Buchari, “Cyclic voltammetry in electrochemical oxidation of amoxicillin with Co(III) as mediator in acidic medium using Pt, Pt/Co and Pt/Co(OH)2 electrodes,” MATEC Web of Conferences, vol. 197, p. 05004, Sep. 2018, doi: 10.1051/MATECCONF/201819705004.
M. T. Ansari, T. M. Ansari, A. Raza, M. Ashraf, and M. Yar, “Spectrophotometric determination of amodiaquinone and sulfadoxine in pharmaceutical preparations,” Chem Analityczna, vol. Vol. 53, No. 2, pp. 305–313, 2008.
S. K. Sanghi, A. Verma, and K. K. Verma, “Determination of amodiaquine in pharmaceuticals by reaction with periodate and spectrophotometry or by high-performance liquid chromatography,” Analyst, vol. 115, no. 3, pp. 333–335, 1990, doi: 10.1039/AN9901500333.
F. A. Ibrahim, F. Belal, and A. El-Brashy, “Fluorometric determination of some aminoquinoline antimalarials using eosin,” Microchemical Journal, vol. 39, no. 1, pp. 65–70, 1989, doi: 10.1016/0026-265X(89)90010-6.
A. S. Amin and Y. M. Issa, “Conductometric and indirect AAS determination of antimalarials,” J Pharm Biomed Anal, vol. 31, no. 4, pp. 785–794, Mar. 2003, doi: 10.1016/S0731-7085(02)00334-5.
J. P. Mufusama, L. Hoellein, D. Feineis, U. Holzgrabe, and G. Bringmann, “Capillary zone electrophoresis for the determination of amodiaquine and three of its synthetic impurities in pharmaceutical formulations,” Electrophoresis, vol. 39, no. 20, pp. 2530–2539, Oct. 2018, doi: 10.1002/ELPS.201800170.
T. E. Chiwunze, V. N. Palakollu, A. A. S. Gill, F. Kayamba, N. B. Thapliyal, and R. Karpoormath, “A highly dispersed multi-walled carbon nanotubes and poly(methyl orange) based electrochemical sensor for the determination of an anti-malarial drug: Amodiaquine,” Materials Science and Engineering: C, vol. 97, pp. 285–292, Apr. 2019, doi: 10.1016/J.MSEC.2018.12.018.
S. Xu et al., “Direct Electrochemistry of Hemin on Graphdiyne Modified Carbon Ionic Liquid Electrode and Electrocatalysis to Bromate,” Int J Electrochem Sci, vol. 17, no. 11, p. 221122, Nov. 2022, doi: 10.20964/2022.11.39.
Ç. C. Koçak and S. Koçak, “Enhanced Electrochemical Determination of Catechol and Hydroquinone Based on Pd Nanoparticles/Poly(Taurine) Modified Glassy Carbon Electrode,” Electroanalysis, vol. 32, no. 2, pp. 358–366, Feb. 2020, doi: 10.1002/ELAN.201900500.
B. Aslışen, Ç. C. Koçak, and S. Koçak, “Electrochemical Determination of Sesamol in Foods by Square Wave Voltammetry at a Boron-Doped Diamond Electrode,” Anal Lett, vol. 53, no. 3, pp. 343–354, Feb. 2020, doi: 10.1080/00032719.2019.1650752.
M. Güneş, S. Karakaya, and Y. Dilgin, “Development of an interference-minimized amperometric-FIA glucose biosensor at a pyrocatechol violet/glucose dehydrogenase-modified graphite pencil electrode,” Chemical Papers, vol. 74, no. 6, pp. 1923–1936, Jun. 2020, doi: 10.1007/S11696-019-01036-W.
Y. Triana, M. Tomisaki, and Y. Einaga, “Oxidation reaction of dissolved hydrogen sulfide using boron doped diamond,” Journal of Electroanalytical Chemistry, vol. 873, p. 114411, Sep. 2020, doi: 10.1016/J.JELECHEM.2020.114411.
Y. Triana, G. Ogata, M. Tomisaki, Irkham, and Y. Einaga, “Blood Oxygen Sensor Using a Boron-Doped Diamond Electrode,” Anal Chem, vol. 94, no. 9, pp. 3948–3955, Mar. 2022, doi: 10.1021/ACS.ANALCHEM.1C04999/SUPPL_FILE/AC1C04999_SI_001.PDF.
Y. Triana, G. Ogata, and Y. Einaga, “Application of boron doped diamond electrodes to electrochemical gas sensor,” Curr Opin Electrochem, vol. 36, p. 101113, Dec. 2022, doi: 10.1016/J.COELEC.2022.101113.
Y. Cheng et al., “A review of modification of carbon electrode material in capacitive deionization,” RSC Adv, vol. 9, no. 42, pp. 24401–24419, Aug. 2019, doi: 10.1039/C9RA04426D.
F. Agustina, A. Y. Bagastyo, and E. Nurhayati, “Electro-oxidation of landfill leachate using boron-doped diamond: role of current density, pH and ions,” Water Science and Technology, vol. 79, no. 5, pp. 921–928, Mar. 2019, doi: 10.2166/WST.2019.040.
J. V. Macpherson, “A practical guide to using boron doped diamond in electrochemical research,” Physical Chemistry Chemical Physics, vol. 17, no. 5, pp. 2935–2949, Jan. 2015, doi: 10.1039/C4CP04022H.
Y. Einaga, J. S. Foord, and G. M. Swain, “Diamond electrodes: Diversity and maturity,” MRS Bull, vol. 39, no. 6, pp. 525–532, 2014, doi: 10.1557/MRS.2014.94.
S. Kasahara et al., “Surface Hydrogenation of Boron-Doped Diamond Electrodes by Cathodic Reduction,” Anal Chem, vol. 89, no. 21, pp. 11341–11347, Nov. 2017, doi: 10.1021/ACS.ANALCHEM.7B02129/SUPPL_FILE/AC7B02129_SI_001.PDF.
H. Possemiers, L. Vandermosten, and P. E. Van Den Steen, “Etiology of lactic acidosis in malaria,” PLoS Pathog, vol. 17, no. 1, p. e1009122, Jan. 2021, doi: 10.1371/JOURNAL.PPAT.1009122.
G. V. Guerreiro, A. J. Zaitouna, and R. Y. Lai, “Characterization of an electrochemical mercury sensor using alternating current, cyclic, square wave and differential pulse voltammetry,” Anal Chim Acta, vol. 810, pp. 79–85, Jan. 2014, doi: 10.1016/J.ACA.2013.12.005.
F. R. Simões and M. G. Xavier, “Nanoscience and its Applications,” 2017. doi: 10.1016/B978-0-323-49780-0/00006-5.
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J Chem Educ, vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/ACS.JCHEMED.7B00361/SUPPL_FILE/ED7B00361_SI_002.DOCX.
R. Wulandari, “Pengembangan Biosensor Akrilamida Berbasis Hemoglobin Menggunakan Boron Doped Diamond Termodifikasi Nanopartikel,” Universitas Bhayangkara Jakarta Raya, Jakarta, 2019. Accessed: Sep. 12, 2024. [Online]. Available: http://repository.ubharajaya.ac.id/24661/1/Retno%20Wulandari-Disertasi-FMIPA-Full%20Text-2019.pdf
C. I. Pakes, J. A. Garrido, and H. Kawarada, “Diamond surface conductivity: Properties, devices, and sensors,” MRS Bull, vol. 39, no. 6, pp. 542–548, 2014, doi: 10.1557/MRS.2014.95.
J. V. Macpherson, “The Use of Conducting Diamond in Electrochemistry,” Advances in Electrochemical Science and Engineering, vol. 16, pp. 163–210, May 2016, doi: 10.1002/9783527697489.CH5.
D. Novitasari, “Oksidasi Elektrokimia dengan Menggunakan Anoda Boron Doped Diamond (BDD) pada Lindi Terolah Secara Biologis,” Institut Teknologi Sepuluh Nopember, Surabaya, 2019.
R. Martínez-Hincapié, V. Climent, and J. M. Feliu, “Peroxodisulfate reduction as a probe to interfacial charge,” Electrochem commun, vol. 88, pp. 43–46, Mar. 2018, doi: 10.1016/J.ELECOM.2018.01.012.
Y. Li, F. Xie, C. Yao, G. Zhang, Y. Guan, and Y. Yang, “A DNA tetrahedral nanomaterial-based dual-signal ratiometric electrochemical aptasensor for the detection of ochratoxin A in corn kernel samples,” Analyst, 2022, Accessed: Jun. 21, 2024. [Online]. Available: https://pubs.rsc.org/en/content/articlehtml/2022/an/d2an00934j
N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A Practical Beginner’s Guide to Cyclic Voltammetry,” J Chem Educ, vol. 95, no. 2, pp. 197–206, Feb. 2018, doi: 10.1021/acs.jchemed.7b00361.
Fatia Ulfah, “Reversibilitas Reaksi Elektrokimia pada Elektroda Superkapasitor Zeolit Berbasis Silika Sekam Padi yang Dikalsinasi pada Suhu 450, 550, dan 650℃,” Bandar Lampung, 2016.
N. Khoiriyah and P. Setiarso, “Modifikasi Elektroda Pasta Karbon dengan Antrakuinon untuk Identifikasi Nikotin pada Rokok Komersial,” Sains dan Matematika, vol. 5, no. 1, pp. 1–6, 2016, Accessed: Jun. 21, 2024. [Online]. Available: https://journal.unesa.ac.id/index.php/sainsmatematika/article/view/6176
S. K. Kamal and Y. Yardım, “Voltammetric Determination of Anti-Malarial Drug Amodiaquine At a Boron-Doped Diamond Electrode Surface in an Anionic Surfactant Media,” Macedonian Journal of Chemistry and Chemical Engineering, vol. 41, no. 2, pp. 163–174, 2022, doi: 10.20450/MJCCE.2022.2565.
Y. Zhao et al., “An electrochemical sensor for selective determination of sulfamethoxazole in surface water using a molecularly imprinted polymer modified BDD electrode,” Analytical Methods, 2015, doi: 10.1039/c4ay03055a.
S. Xu et al., “Direct Electrochemistry of Hemin on Graphdiyne Modified Carbon Ionic Liquid Electrode and Electrocatalysis to Bromate,” Int J Electrochem Sci, 2022, Accessed: Jun. 21, 2024. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1452398123026494
M. M. Zareh, K. Elgendy, A. A. Keshk, M. Zaky, and A. Abd-Alhady, “Preparation of Cu-PVC membrane electrochemical membrane sensor based on β-Cyclodextrin,” Int J Electrochem Sci, vol. 16, no. 12, p. 21123, Dec. 2021, doi: 10.20964/2021.12.41.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).