Vol. 8 No. 2 (2025)
Open Access
Peer Reviewed

REFORMULATION OF GEOMETRIC OPTICS WITHIN THE FRAMEWORK OF ABELIAN U(1) GAUGE THEORY: A NOVEL APPROACH TO UNDERSTANDING LIGHT PROPAGATION

Authors

Adrianus Inu Natalisanto , Sri Purwaningsih

DOI:

10.29303/ipr.v8i2.464

Downloads

Received: Jan 12, 2025
Accepted: May 23, 2025
Published: May 24, 2025

Abstract

This study introduces a reformulation of geometrical optics through the framework of Abelian U(1) gauge theory. By leveraging this novel approach, phase equations are derived, serving as the cornerstone for determining the trajectories of light rays. The proposed formulation is validated through simulations of light propagation in diverse scenarios, including homogeneous refractive index media, vacuum, anisotropic materials, and optical metamaterials. These results underscore the versatility and predictive power of this gauge-theoretic approach, opening new avenues for exploring and modeling complex optical phenomena.

Keywords:

Geometrical optics, Abelian 𝑈(1) gauge theory, Light propagation

References

M. Born and E. Wolf, Principles of optics, 7th ed. Cambridge University Press, 1999.

E. Hecht, Optics, 4th ed. Pearson Education, Inc., 2002.

B. D. Guenther, Modern Optics Simplified, 1st ed. Oxford University Press, 2020.

A. V. Fedorov, C. A. Stepa, A. V. Korolkova, M. N. Gevorkyan, and D. S. Kulyabov, “Methodological derivation of the eikonal equation,†Discret. Contin. Model. Appl. Comput. Sci., vol. 31, no. 4, pp. 399–418, 2023.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed. Pergamon Press, 1984.

K. V Shajesh, “Eikonal Approximation.†[Online]. Available: https://www.nhn.ou.edu/~shajesh/eikonal/sp.pdf

A. F. Ranada, “Topological electromagnetism,†J. Phys. 4 Math. Gen, vol. 25, pp. 1621–1641, 1992.

F. Liu and J. Li, “Gauge field optics with anisotropic media,†Phys. Rev. Lett., vol. 114, no. 10, Mar. 2015.

D. Delphenich, “On geodesics of gradient-index optical metrics and the optical-mechanical analogy,†2020. [Online]. Available: https://arxiv.org/abs/2002.04390

D. K. Sharma and S. K. Pathak, “Propagation characteristics of an extremely anisotropic metamaterial loaded helical guide,†Opt. Express, vol. 24, no. 26, p. 29521, Dec. 2016.

M. Hadi and S. Muliyono, “Gauge Theory in a Vacuum Space-time,†Indones. Phys. Rev., vol. 7, no. 1, pp. 143–151, 2024.

S. Weinberg, The Quantum Theory of Fields Volume I Foundations. 1995.

I. J. Aitchison and A. J. Hey, Gauge Theories Particle Physics, VOLUME 1 From Relativistic Quantum Mechanics to QED. 2013.

S. Alsid and M. Serna, “Unifying Geometrical Representations of Gauge Theory,†Found. Phys., vol. 45, no. 1, pp. 75–103, Jan. 2015.

D. E. Ruiz and I. Y. Dodin, “Lagrangian geometrical optics of nonadiabatic vector waves and spin particles,†Phys. Lett. Sect. A Gen. At. Solid State Phys., vol. 379, no. 38, pp. 2337–2350, Aug. 2015.

P. Fontana, “Quantum simulations of gauge theories and topological phases,†2021. [Online]. Available: https://iris.sissa.it/retrieve/323d4c9d-5fd0-45a4-9186-758b91a12ed4/thesis_v3__external_referees_corrections_.pdf

K. H. Yang, “Gauge Transformations and Quantum Mechanics Gauge Invariant Interpretation of Quantum Mechanics,†Ann. Phys. (N. Y)., vol. 96, pp. 62–96, 1976.

M. J. D. Hamilton, Mathematical Gauge Theory. Springer International Publishing, 2017.

Y. Chen et al., “Non-Abelian gauge field optics,†Nat. Commun., vol. 10, no. 1, Dec. 2019.

S. I. Maslovski and H. Mariji, “Envelope Dyadic Green’s Function for Uniaxial Metamaterials,†Feb. 2018. [Online]. Available: http://arxiv.org/abs/1802.05899

C. A. Dartora et al., “Lagrangian-Hamiltonian formulation of paraxial optics and applications: Study of gauge symmetries and the optical spin Hall effect,†Phys. Rev. A - At. Mol. Opt. Phys., vol. 83, no. 1, Jan. 2011.

A. H. Gevorgyan and M. S. Rafayelyan, “Light propagation in anisotropic metamaterials. I. Dispersion surfaces,†J. Contemp. Phys., vol. 48, no. 6, pp. 276–284, 2013.

T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach–Zehnder interferometer,†Opt. Lett., vol. 29, no. 23, p. 2797, 2004.

S. K. Debnath and M. P. Kothiyal, “Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: Use of a spectrally resolved white-light interferometer,†Appl. Opt., vol. 46, no. 22, pp. 5103–5109, 2007.

J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography,†Appl. Opt., vol. 37, no. 11, p. 2145, 1998.

M. L. Boas, Mathematical Methods in Physical the Physical Sciences, vol. 57, no. 1. John Wiley & Son, 2006.

M. Masujima, Applied Mathematical Methods in Theoretical Physics. Wiley-VCH Verlag GmbH&Co.KGaA, 2005. doi: 10.1002/9783527627745.

M. R. Spiegel, Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill, Inc., 1959.

D. Tong, “Gauge Theory,†2018. doi: 10.1007/978-3-319-14765-9_14.

S. S. Sastry, Introductory Methods of Numerical Analysis, Fifth., vol. 4, no. 1. PHI Learning Private Limited, New Delhi, 2012.

Author Biographies

Adrianus Inu Natalisanto, Prodi Fisika, Lab Fisika Teori dan Material, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Mulawarman, Indonesia

Sri Purwaningsih, Prodi Fisika, Fakultas Sains dan Teknologi, Universitas Jambi, Indonesia

Downloads

Download data is not yet available.

How to Cite

Natalisanto, A. I., & Purwaningsih, S. (2025). REFORMULATION OF GEOMETRIC OPTICS WITHIN THE FRAMEWORK OF ABELIAN U(1) GAUGE THEORY: A NOVEL APPROACH TO UNDERSTANDING LIGHT PROPAGATION. Indonesian Physical Review, 8(2), 540–552. https://doi.org/10.29303/ipr.v8i2.464

Similar Articles

<< < 1 2 3 > >> 

You may also start an advanced similarity search for this article.