Vol. 6 No. 1 (2023)
Open Access
Peer Reviewed

APPLICATION OF SUPPORT VECTOR MACHINE ON DROUGHT CODE CLASSIFICATION IN NORTH SUMATRA INDONESIA

Authors

Kartika Dewi Butar Butar , Poltak Sihombing , Tulus Tulus

DOI:

10.29303/ipr.v6i1.196

Downloads

Received: Oct 28, 2022
Accepted: Dec 19, 2022
Published: Dec 26, 2022

Abstract

This study aims to classify the Drought Code in North Sumatra. Drought Code is part of Fire Danger Rating System (FDRS) developed in Canada. One of the sub-systems of FDRS is Fire Weather Index (FWI) that aims to evaluate fire hazards from current and past weather conditions. Drought Code is classified by using Support Vector Machine. Support Vector Machine is widely used in the data classification process. One of the advantages of Support Vector Machine methods is it has ability in classifying large amount of data and classifying more than two classes or multi-classes.  Weather parameters used in this study are rainfall and temperature in North Sumatra. The data used are from 8 (eight) meteorological observation stations in North Sumatra from 2017 to 2021. Drought Code is carried out with several tests using several kernels contained in SVM.

Keywords:

SVM Method, Clasification, FWI, Drought Code, CFFDRS

References

R. H. Ziel, P. A. Bieniek, U. S. Bhatt, H. Strader, T. S. Rupp, and A. York, “A comparison of fire weather indices with MODIS fire days for the natural regions of alaska,†Forests, vol. 11, no. 5, 2020, doi: 10.3390/F11050516.

Suciarti, “Sistem Informasi Tingkat Bahaya Kebakaran Hutan dan Lahan Dengan Menggunakan Fire Weather Index (FWI) dan SIG Arcview,†J. Tek. Elektro Univ. Tanjungpura, vol. 1, no. 1, pp. 1–9, 2013.

B. D. Amiro et al., “Fire weather index system components for large fires in the Canadian boreal forest,†Int. J. Wildl. Fire, vol. 13, no. 4, pp. 391–400, 2004, doi: 10.1071/WF03066.

D. M. Midyanti, “Combination of SOM-RBF for drought code prediction using rainfall and air temperature data,†J. Teknol. dan Sist. Komput., vol. 8, no. 1, pp. 64–68, 2020, doi: 10.14710/jtsiskom.8.1.2020.64-68.

Y. Yang, M. Uddstrom, G. Pearce, and M. Revell, “Reformulation of the drought code in the Canadian Fire Weather Index System implemented in New Zealand,†J. Appl. Meteorol. Climatol., vol. 54, no. 7, pp. 1523–1537, 2015, doi: 10.1175/JAMC-D-14-0090.1.

Varela, “Fire Weather Index (FWI) classification for fire danger assessment applied in Greece,†Tethys, J. Weather Clim. West. Mediterrania, no. 1994, pp. 31–40, 2015, doi: 10.3369/tethys.2018.15.03.

E. Saputra, U. Khaira, and Z. Abidin, “Implementasi Algoritme Support Vector Machines untuk Klasifikasi Area Terbakar di Lahan Gambut ( Implementation of Support Vector Machines Algorithm to Classify Burn Area of Peat ),†J. Nas. Tek. Elektro dan Teknol. Inf., vol. 10, no. 1, pp. 19–24, 2021.

H. Harafani, “Optimasi Parameter Pada Metode Support Vector Machine Berbasis Algoritma Genetika untuk Estimasi Kebakaran Hutan,†J. Intell. Syst., vol. 1, no. 2, pp. 82–90, 2015.

E. E. Pratama and B. R. Trilaksono, “Klasifikasi Topik Keluhan Pelanggan Berdasarkan Tweet dengan Menggunakan Penggabungan Feature Hasil Ekstraksi pada Metode Support Vector Machine (SVM),†J. Edukasi dan Penelit. Inform., vol. 1, no. 2, 2015, doi: 10.26418/jp.v1i2.11023.

W. Purnami, A. M. Regresi, and L. Ordinal, “Perbandingan Klasifikasi Tingkat Keganasan Breast Cancer Dengan Menggunakan Regresi Logistik Ordinal Dan Support Vector Machine ( SVM ),†J. Sains Dan Seni Its, vol. 1, no. 1, 2012.

Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, “A Practical Guide to Support Vector Classification,†BJU Int., vol. 101, no. 1, pp. 1396–1400, 2008.

Y. Darmawan, H. H. Hsu, and J. Y. Yu, “Article characteristics of large-scale circulation affecting the inter-annual precipitation variability in northern sumatra island during boreal summer,†Atmosphere (Basel)., vol. 12, no. 2, pp. 1–20, 2021, doi: 10.3390/atmos12020136.

C. E. Van Wagner, P. Forest, and E. Station, “Structure of the Canadian,†Can. For. Serv. Publ., no. 1333, 1974.

M. Awad and R. Khanna, “Efficient learning machines: Theories, concepts, and applications for engineers and system designers,†Effic. Learn. Mach. Theor. Concepts, Appl. Eng. Syst. Des., no. January, pp. 1–248, 2015, doi: 10.1007/978-1-4302-5990-9.

Author Biography

Kartika Dewi Butar Butar, Universitas Sumatera Utara

Downloads

Download data is not yet available.

How to Cite

Butar Butar, K. D., Sihombing, P., & Tulus, T. (2022). APPLICATION OF SUPPORT VECTOR MACHINE ON DROUGHT CODE CLASSIFICATION IN NORTH SUMATRA INDONESIA. Indonesian Physical Review, 6(1), 51–59. https://doi.org/10.29303/ipr.v6i1.196

Similar Articles

<< < 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.