Vol. 4 No. 3 (2021)
Open Access
Peer Reviewed

PENERAPAN METODE WAVELET THRESHOLDING UNTUK MENGAPROKSIMASI FUNGSI NONLINIER

Authors

Muhammad Luthfie Janariah , Syamsul Bahri , Nurul Fitriyani

DOI:

10.29303/ipr.v4i3.98

Downloads

Received: Apr 28, 2021
Accepted: Aug 04, 2021
Published: Aug 16, 2021

Abstract

The wavelet thresholding method is an approximation method by reducing noise, which is known as the denoising process. This denoising process will remove noise while closed the important information in the data. In this research, the wavelet thresholding method is used to approximate the nonlinear function. The data used for the simulation is a representation of several functions that represent several events that often occur in the real world, which consists of the types of functions Blocks, Bumps, Doppler, and HeaviSine.  Based on simulation results based on the indicator value of the Cross-Validation (CV), the best approximation of the nonlinear function using the wavelet thresholding method for the four simulation cases are: (i) the Blocks function is given by Haar wavelet with a soft of thresholding function and the 10-th resolution level ; (ii) the Doppler function is given on the 2-nd order of Symlets wavelet with a soft of thresholding function and the 10-th resolution level; (iii) the Bumps function is given on the 6-th order of Daubechies wavelet with a soft of thresholding function and the 10-th resolution level; and (iv) the HeaviSine function is given by the 3-rd order of Coiflet wavelet with a soft of thresholding function and the 7-th resolution level.

Keywords:

Aproksimasi, Denoising, Fungsi Nonlinier, Threshold, Wavelet

References

Iske, A. (2018). Aproximation Theory and Algorithms for Data Analysis. Switzerland: Springer. DOI://doi.org/10.1007/978-3-030-05228-7

DeVore, R. A. (2009). Multiscale, Nonlinear and Adaptive Approximation (Akunoth, Eds.), Berlin: Springer-Verlag.

Hofinger, A. (2006). Nonlinear Function Approximation: Computing Smooth Solution with Adaptive Greedy Algorithm. Journal of Approximation Theory, 143, 159-175.

Hayakawa, T. (2005). A New Characterization on The Approximation of Nonlinear Function Via Neural Network: An Adaptive Control Perspective. The European Control Conference, 4117-4122.

Amin, H., Curtis, K. M., & Hayes-Gill, B. R. (1997). Piecewise Linear Approximation Apprroach to Nonlinear Function of a Neural Network. IEE Proceeding Circuit Devices System, Vol. 144, No. 6.

Christensen, O. & Christensen, K. L. (2004). Aproximation Theori: From Taylor Polinomials to Wavelets. Boston: Birkhauser.

Hall, P., & Patil, P. (1995). On Wavelet Methods for estimating smooth functions. Bernoully, 41-58.

Zakharov, V. V., & Casco, f. (2002). Discrete fast Wavelet transform Algorithm and its Application to prediction problem. AOIJ Articles.

Warsito, B., Subanar., & Abdurakhman. (2013). Pemodelan Time Series dengan Maximal Overlap Discrete Wavelet Transfom. Semarang: Universitas Diponegoro.

He, C., Xing, J., Li, J., Yang, Q., & Wang, R. (2015). A New Wavelet Thresholding Determination Method Considering Interscale Correlation in Signal Denoising. Mathematical Problems in Engineering, 1-9, DOI:10.1155/2015/280251.

Hedaoo, P. & Godbole, S. S. (2011). Wavelet Thresholding Approach for Image Denoising. International Journal of Network Security & It’s Application, Vol.3, No. 4, 16-21.

Kusumaningrum, D. A., Suparti, & Marudani, D. A. I. (2017). Analisis Data Runtun Waktu Menggunakan Metode Wavelet Thresholding dengan Maximal Overlap Discrete Transformation, Jurnal Gaussian, Vol. 6, No. 1, 2339-2541.

Nason, G. (2006). Wavelet Methods on statistics with R. Bristol: Springer.

Suparti. (2005). Perbandingan Estimator Regresi Nonparametrik Menggunakan. Jurnal Matematika, 8, 88-94.

Donoho, D. L., & Johnstone, I. M. (1998). Minimax Estimation Via Wavelet Shrinkage. The Annals of Statistics, 879-921.

Antoniadis, A., Gijbels, I., & Poggi, J. M. (2009). Smoothing Non-Equispaced Heavy Noisy Data. Statistica Sinica, 1371-1381.

Issaoui, H., Bouzid, A. and Ellouze, N. (2012). Comparison between soft and hard Thresholding on selected intrinsic mode selection. 2012 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), 712-715. doi: 10.1109/SETIT.2012.6482001.

Jansen, M. (2001). Noise Reduction by Wavelet Thresholding. New York: Springer-Verlag.

Ogden, R. R. (1997). Essential Wavelets for Statistical Applications and Data Analysis. Bosto: Bikhauser.

Bahri, S., Awalushaumi, L. & Susanto, M. (2018). The Aproximation of Nonlinear Function using Daubechies and Symlets Wavelets. Proceeding of The First International Conference on Mathematics and Islam, 300-306.

Author Biographies

Muhammad Luthfie Janariah, University of Mataram

Syamsul Bahri, University of Mataram

Nurul Fitriyani, University of Mataram

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

How to Cite

Janariah, M. L., Bahri, S., & Fitriyani, N. (2021). PENERAPAN METODE WAVELET THRESHOLDING UNTUK MENGAPROKSIMASI FUNGSI NONLINIER. Indonesian Physical Review, 4(3), 122–137. https://doi.org/10.29303/ipr.v4i3.98