Vol. 9 No. 1 (2026)
Open Access
Peer Reviewed

THERMOPHYSICAL AND THERMAL CHARGING ENHANCEMENT OF PEG/Al₂O₃ COMPOSITES FOR THERMAL ENERGY STORAGE (TES)

Authors

Amdy Fachredzy , Chyntia R. Situmorang , Erna Frida , Ariadne L. Juwono , Anggito P. Tetuko , Muhammad Fauzi , Muhammad A. H. Nabawi , Achmad Maulana S. Sebayang , Eko A. Setiadi

DOI:

10.29303/ipr.v9i1.610

Downloads

Received: Oct 11, 2025
Accepted: Jan 21, 2026
Published: Jan 25, 2026

Abstract

The transition to renewable energy continues to face challenges in balancing supply and demand. Thermal Energy Storage (TES) based on Phase Change Materials (PCM) offers a potential solution, with polyethylene glycol (PEG) providing high storage capacity but low thermal conductivity. This study focuses on enhancing the performance of PEG 6000 by incorporating aluminum oxide (Al₂O₃, 8 and 12 wt.%) and sodium dodecyl benzene sulfonate (SDBS) as a surfactant. X-ray Diffraction (XRD) confirmed that no new phases were formed, while Differential Scanning Calorimetry (DSC) recorded an increase in latent heat up to 224.6 J/g for PEG/Al₂O₃ 12%. Thermal conductivity improved by more than 33.3%, and Thermogravimetric Analysis (TGA) verified enhanced thermal stability. Charging–discharging tests further demonstrated an extended average charging time with slight fluctuations during discharging. These findings highlight the promising potential of PEG/Al₂O₃ composites for TES applications in renewable energy systems.

Keywords:

PEG Phase Change Materials Thermal Energy Storage Al2O3 Charging

References

[1] S. Chen and S. Nouseen, “Tackling economic policy uncertainty and improving energy security through clean energy change,” Energy, vol. 315, no. December 2024, 2025.

[2] D. Pérez-Gallego, J. Gonzalez-Ayala, A. Medina, and A. Calvo Hernández, “Comprehensive review of dynamical simulation models of packed-bed systems for thermal energy storage applications in renewable power production,” Heliyon, vol. 11, no. 4, 2025.

[3] S Shankaranarayanan and D. K. Murugan, “Recent trends in thermal energy storage for enhanced solar still performance,” Renew. Sustain. Energy Rev., vol. 212, no. August 2024, 2025.

[4] X. Li, Q. Wang, X. Huang, X. Yang, and B. Sundén, “Melting and solidification performance of latent heat thermal energy storage system under flip condition,” Int. J. Heat Mass Transf., vol. 236, no. April 2024, 2025.

[5] Y. T. Lee, Y. R. Liao, L. H. Chien, F. B. Cheung, and A. S. Yang, “Performance enhancement of latent heat thermal energy storage systems via dynamic melting process of PCM under different control strategies,” Appl. Therm. Eng., vol. 259, no. November 2024, 2025.

[6] M. Fauzi, B. Kurniawan, A. Fachredzy, M. A. H. Nabawi, and A. P. Tetuko, “Paraffin-Based Phase Change Materials (PCM) with Enhanced Thermal Conductivity Through Particle Addition and Encapsulation Techniques for Thermal Energy Storage: A Critical Review of Materials Science,” Trends Sci., vol. 22, no. 9, p. 10308, 2025.

[7] M. Ouikhalfan, A. Sarı, G. Hekimoğlu, O. Gencel, and V. V. Tyagi, “Thermal energy storage properties, thermal conductivity, chemical/and thermal reliability of three different organic phase change materials doped with hexagonal boron nitride,” Surfaces and Interfaces, vol. 32, no. June, 2022.

[8] D. G. Atinafu, Y. S. Ok, H. W. Kua, and S. Kim, “Thermal properties of composite organic phase change materials (PCMs): A critical review on their engineering chemistry,” Appl. Therm. Eng., vol. 181, no. August 2020.

[9] N. Cojocariu, C. A. Ţugui, E. I. Cherecheş, and A. A. Minea, “Nanocolloids Based on PEG Mixtures with Several Nanoparticles: Experimental Study on Viscosity, Thermal Conductivity, Density and Isobaric Heat Capacity,” Int. J. Thermophys., vol. 46, no. 10, pp. 1–21, 2025.

[10] B. Sivapalan, K. S. Suganthi, S. Kiruthika, M. K. Saranprabhu, and K. S. Rajan, “Superior Thermal Conductivity and Charging Performance of Zinc Oxide Dispersed Paraffin Wax for Thermal Energy Storage Applications,” Korean J. Chem. Eng., vol. 41, no. 8, pp. 2389–2404, 2024.

[11] S. K. Singh, S. K. Verma, and R. Kumar, “Thermal performance and behavior analysis of SiO2, Al2O3, and MgO-based nano-enhanced phase-changing materials, latent heat thermal energy storage system,” J. Energy Storage, vol. 48, no. October 2021, p. 103977, 2022.

[12] N. K. Noran, A. K. Pandey, J. Selvaraj, D. Buddhi, and V. V Tyagi, “Surfactant role in nano-enhanced phase change materials,” 6th Int. Conf. Clean Energy Technol., vol. 1281, no. 1, p. 012043, 2023.

[13] A. K. Ansu, R. K. Sharma, F. Y. Hagos, D. Tripathi, and V. V. Tyagi, “Improved thermal energy storage behavior of polyethylene glycol-based NEOPCM containing aluminum oxide nanoparticles for solar thermal applications,” J. Therm. Anal. Calorim., vol. 143, no. 3, pp. 1881–1892, 2021.

[14] Y. A. Bhutto, A. K. Pandey, R. Saidur, I. A. Laghari, D. Buddhi, and V. V. Tyagi, “Thermal behaviour of Paraffin-MWCNT stabilized by Sodium dodecylbenzene sulphonate nano-enhanced phase change material for energy storage applications,” IOP Conf. Ser. Earth Environ. Sci., vol. 1261, no. 1, 2023.

[15] N. H. M. Zaimi, A. Nawabjan, S. F. A. Rahman, S. M. Hussin, and S. N. N. A. Hamidon, “Evaluating the Role of Sodium Dodecylbenzene Sulfonate as Surfactant Towards Enhancing Thermophysical Properties of Paraffin/Graphene Nanoplatelet Phase Change Material: Synthesis and Characterization in PV Cooling Perspective,” Int. J. Thermophys., vol. 43, no. 1, pp. 1–25, 2022.

[16] A. Fachredzy et al., “Enhanced Thermal Performance of Polyethylene Glycol- Based Phase Change Materials Using ZnO,” Indones. Phys. Rev., vol. 8, no. 3, pp. 646–659, 2025.

[17] V. Arasu, D. Kumar, and I. Khan, “Experimental investigation of thermal conductivity and stability of TiO2-Ag/water nanocomposite fluid with SDBS and SDS surfactants,” Thermochim. Acta, vol. 678, no. 8, 2019.

[18] D. Cabaleiro et al., “Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance,” Renew. Sustain. Energy Rev., vol. 159, no. 7, 2022.

[19] S. Drissi, T. C. Ling, and K. H. Mo, “Thermal efficiency and durability performances of paraffinic phase change materials with enhanced thermal conductivity – A review,” Thermochim. Acta, vol. 673, no. August 2018, pp. 198–210, 2019.

[20] Z. Said et al., “Nano-enhanced phase change materials: Fundamentals and applications,” Prog. Energy Combust. Sci., vol. 104, no. June, 2024.

[21] M. Alheshibri, H. M. Albetran, B. H. Abdelrahman, N. Yekeen, and I. M. Low, “Wettability of Nanostructured Transition-Metal Oxide (Al 2 O 3 , CeO 2 , and AlCeO 3 ) Powder Surfaces,” Materials (Basel)., vol. 15, no. 5485, pp. 1–12, 2022.

[22] D. Chakraborty and G. Bhavani, “Optimization of Ca doped in alumina for efficient sunlight-irradiated methylene blue degradation,” J. Mater. Sci., vol. 59, no. 46, pp. 21377–21390, 2024.

[23] M. Fauzi et al., “Macro-encapsulation of polyethylene glycol and magnetite (Fe3O4) in concrete as phase change materials for building thermal management,” J. Met. Mater. Miner., vol. 35, no. 3, pp. 1–10, 2025.

[24] R. Et-tanteny, B. El, I. Manssouri, and H. Limami, “Physicochemical , mechanical and thermal analysis of unfired clay bricks : Kaolinite-PEG 6000 composite,” Clean. Eng. Technol. J., vol. 22, no. June, 2024.

[25] X. Shen et al., “Form-stable phase change materials supported by nanostructured zinc polyacrylate weakening super cooling of polyethylene glycol,” J. Appl. Polym. Sci., vol. 140, no. 37, pp. 1–8, 2023.

[26] N. Praveenkumar, K. Lingadurai, T. Ramkumar, and R. Bharathiraja, “Characterization and thermophysical property evaluation of ceramic and metal oxide-based hybrid nanoparticles enhanced paraffin PCM,” J. Therm. Anal. Calorim., vol. 150, no. 1, 2025.

[27] H. Fatahi, “Thermal Characterization of Phase Change Materials by Differential Scanning Calorimetry: A Review,” 2022.

[28] H. Samara, M. Hamdan, and O. Al-oran, “Effect of Al 2 O 3 nanoparticles addition on the thermal characteristics of paraffin wax,” Int. J. Thermofluids J., vol. 22, 2024.

[29] S. Ranjbar, H. Masoumi, R. Haghighi Khoshkhoo, and M. Mirfendereski, “Experimental investigation of stability and thermal conductivity of phase change materials containing pristine and functionalized multi-walled carbon nanotubes,” J. Therm. Anal. Calorim., vol. 140, no. 5, pp. 2505–2518, 2020.

[30] N. Ulker, H. Bulut, and G. Demircan, “Comparative study on the effect of surface-modified nanoparticles on PCM for solar energy applications,” J. Therm. Anal. Calorim., vol. 149, no. 21, pp. 12053–12070, 2024

[31] M. Mohan et al., “Optimization of synthesis parameters for copper oxide-enhanced phase change material: Balancing thermal conductivity and latent heat trade-off,” Therm. Sci. Eng. Prog., vol. 59, no. September 2024, 2025.

[32] A. M. S. Sebayang et al., “Polyethylene glycol-magnetite composite encapsulated concrete as a thermal energy storage,” Results Mater., vol. 26, no. September 2024, 2025.

[33] H. Jiang et al., “Efficient Enhancement of Heat Storage Capacity of Polyethylene Glycol Phase Change Material Based on a Novel Fly Ash Support,” ACS Sustain. Chem. Eng., vol. 12, no. 19, pp. 7382–7391, 20244.

[34] K. Y. Leong, S. Hasbi, K. Z. Ku Ahmad, N. Mat Jali, H. C. Ong, and M. F. Md Din, “Thermal properties evaluation of paraffin wax enhanced with carbon nanotubes as latent heat thermal energy storage,” J. Energy Storage, vol. 52, no. PC, p. 105027, 2022.

[35] K. Yuan et al., “Engineering the Thermal Conductivity of Functional Phase-Change Materials for Heat Energy Conversion, Storage, and Utilization,” Adv. Funct. Mater., vol. 30, no. 8, pp. 1–31, 2020.

[36] M. D. Ahsan, P. Chand, and K. Namrata, “Development and performance analysis of cold storage systems utilising aluminum oxide (Al2O3) nanoparticle-enhanced phase change materials integrated with photovoltaic solar energy,” J. Indian Chem. Soc., vol. 102, no. 2, 2025.

[37] B. Tang, C. Wu, M. Qiu, X. Zhang, and S. Zhang, “PEG/SiO2-Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity,” Mater. Chem. Phys., vol. 144, no. 1–2, pp. 162–167, 2014.

[38] M. A. Sheik, M. K. Aravindan, N. Beemkumar, P. K. Chaurasiya, and J. A. Dhanraj, “Enhancement of Heat Transfer in PEG 1000 Using Nano-Phase Change Material for Thermal Energy Storage,” Arab. J. Sci. Eng., vol. 47, no. 12, pp. 15899–15913, 2022.

[39] E. A. Setiadi et al., “Encapsulation of Paraffin-Metal Oxide Composites in a Novel Design of Finned Copper Tubes (Square Configuration) for Thermal Storage Concrete Application,” Heat Transf. Res., vol. 56, no. 8, pp. 13–26, 2025.

[40] M. Ouikhalfan, G. Hekimoǧlu, A. Sari, O. Gencel, and V. V. Tyagi, “Metal Oxide Nanoparticle Dispersed-Polyethylene Glycol: Thermal Conductivity and Thermal Energy Storage Properties,” Energy and Fuels, vol. 36, no. 5, pp. 2821–2832, 2022.

[41] S. P. Chitriv, K. Dharmadhikari, N. A., A. S. Archak, V. R.P., and G. C. DSouza, “Unzipped multiwalled carbon nanotube oxide / PEG based phase change composite for latent heat energy storage,” Int. J. Heat Mass Transf., vol. 220, no. July 2023, pp. 1–8, 2024.

Author Biographies

Amdy Fachredzy, Universitas Indonesia

Chyntia R. Situmorang, Universitas Sumatera Utara

Erna Frida, Universitas Sumatera Utara

Ariadne L. Juwono, Universitas Indonesia

Anggito P. Tetuko, National Research and Innovation Agency (BRIN)

Muhammad Fauzi, Universitas Indonesia

Muhammad A. H. Nabawi, National Research and Innovation Agency (BRIN)

Achmad Maulana S. Sebayang, Universitas Sumatera Utara

Eko A. Setiadi, National Research and Innovation Agency (BRIN)

Downloads

Download data is not yet available.

How to Cite

Fachredzy, A., Situmorang, C. R., Frida, E., Juwono, A. L., Tetuko, A. P., Fauzi, M., … Setiadi, E. A. (2026). THERMOPHYSICAL AND THERMAL CHARGING ENHANCEMENT OF PEG/Al₂O₃ COMPOSITES FOR THERMAL ENERGY STORAGE (TES). Indonesian Physical Review, 9(1), 130–144. https://doi.org/10.29303/ipr.v9i1.610

Similar Articles

<< < 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.