Vol. 9 No. 1 (2026)
Open Access
Peer Reviewed

SYNTHESIS OF NANOHYDROXYAPATITE FROM BUKIT JIMBARAN LIMESTONE

Authors

Gede Arya Amerta , Ida Bagus Putu Mardana , Putu Yasa

DOI:

10.29303/ipr.v9i1.548

Downloads

Received: Aug 01, 2025
Accepted: Oct 30, 2025
Published: Nov 04, 2025

Abstract

The global demand for biocompatible biomimetic materials drives the development of nanohydroxyapatite (HAp) for biomedical applications. This study aims to synthesize nanohydroxyapatite (Ca₁₀(PO₄)₆(OH)₂) from Bukit Jimbaran limestone, Bali, through a precipitation method. XRF analysis shows that the limestone contains 99.62% CaO, which is the main source of calcium. FTIR results detect the presence of phosphate (PO₄³⁻), carbonate (CO₃²⁻), calcium oxide (CaO), and hydroxyl (OH⁻) groups, confirming the formation of the typical HAp structure. The XRD diffraction pattern showed good agreement with JCPDS 09-0432, with major peaks on the (211), (112), and (300) planes, lattice parameters a = b = 9.45 Å and c = 6.85 Å, an average crystallite size of 8.70 nm, and a crystallinity of 92.88%. SEM-EDX analysis revealed agglomerated particle morphology, with a Ca content of 32.0 wt.% and a P content of 14.0 wt.%. The high crystallinity and very small crystallite size confirm the potential of this synthesized HAp to enhance bioactivity and accelerate bone integration, making Jimbaran limestone HP a strong candidate in the biomedical sector.

Keywords:

HAp precipitation crystallinity particle morphology functional groups

References

[1] X. Mo, D. Zhang, K. Liu, X. Zhao, X. Li, and W. Wang, “Nano-Hydroxyapatite Composite Scaffolds Loaded with Bioactive Factors and Drugs for Bone Tissue Engineering,” Int. J. Mol. Sci., vol. 24, no. 2, pp. 1-30, 2023.

[2] S. Aziz, I. D. Ana, Y. Yusuf, and H. D. Pranowo, “Synthesis of Biocompatible Silver-Doped Carbonate Hydroxyapatite Nanoparticles Using Microwave-Assisted Precipitation and In Vitro Studies for the Prevention of Peri-Implantitis,” J. Funct. Biomater., vol. 14, no. 7, pp. 1-14, 2023.

[3] A. Keremu, M. Abulikemu, Z. Liang, A. Abulikemu, and A. Tuxun, “Anti-Infection Efficacy, Osteogenesis Potential, and Biocompatibility of 3D Printed PLGA/Nano-Hydroxyapatite Porous Scaffolds Grafted with Vancomycin/DOPA/rhBMP-2 in Infected Rabbit Bone Defects,” Int. J. Nanomedicine, vol. 20, no. 1, pp. 6399-6421, 2025.

[4] K. Sinulingga, M. Sirait, N. Siregar, and H. Abdullah, “Synthesis and Characterizations of Natural Limestone-Derived Nano-Hydroxyapatite (HAp): A Comparison Study of Different Metals Doped HAps on Antibacterial Activity,” RSC Adv., vol. 11, no. 26, pp. 15896–15904, 2021.

[5] M. A. E. H. Adam, S. E. El- Shafey, and S. R. Mohamed, “Enhancing the Performance of SILRES® BS OH 100 as A Consolidant of Archaeological Limestone Using Nano-Hydroxyapatite,” Egypt. J. Chem., vol. 66, no. 10, pp. 403–414, 2023.

[6] X. Hou, L. Zhang, Z. Zhou, X. Luo, T. Wang, X. Zhao, B. Lu, F. Chen, and L. Zheng, “Calcium Phosphate-Based Biomaterials for Bone Repair,” J. Funct. Biomater., vol. 13, no. 4, pp. 1-39, 2022.

[7] J. G. Lyons, M. A. Plantz, W. K. Hsu, E. L. Hsu, and S. Minardi, “Nanostructured Biomaterials for Bone Regeneration,” Front. Bioeng. Biotechnol., vol. 8, no. 1, pp. 1–28, 2020.

[8] A. M. de Souza, H. Araujo-Silva, A. M. Costa, A. L. Rossi, A. M. Rossi, J. M. Granjeiro, A. C. Luchiari, and S. R. B. de Medeiros, “Embryotoxicity and Visual-Motor Response of Functionalized Nanostructured Hydroxyapatite-Based Biomaterials in Zebrafish (Danio rerio),” Chemosphere, vol. 313, no. 1, pp. 1-11, 2022.

[9] R. P. Alanis-Gomez, F. Mernandez-Rosas, J. D. Olivares-Hernandez, E. M. Rivera-Munoz, A. Zapatero-Gutierrez, N. Mendez-Lozano, J. R. Alanis-Gomez, and R. Velazquez-Castillo, “Magnesium-Doped Hydroxyapatite Nanofibers for Medicine Applications: Characterization, Antimicrobial Activity, and Cytotoxicity Study,” Int. J. Mol. Sci., vol. 25, no. 22, pp. 1-26, 2024.

[10] K. Jarquin-Yanez, E. Rubio-Rosas, G. Pinon-Zarate, A. Castell-Rodriguez, and M. Poisot, “Cellulose-Chitosan-Nanohydroxyapatite Hybrid Composites by One-Pot Synthesis for Biomedical Applications,” polymers, vol. 13, no. 1, pp. 1–13, 2021.

[11] G. Ulian, D. Moro, and G. Valdrè, “Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective,” Biomolecules, vol. 11, no. 5, pp. 1-34, 2021.

[12] A. Anil, W. I. Ibraheem, A. A. Meshni, R. S. Preethanath, and S. Anil, “Nano-Hydroxyapatite (nHAp) in the Remineralization of Early Dental Caries: A Scoping Review,” Int. J. Environ. Res. Public Health, vol. 19, no. 9, pp. 1-14, 2022.

[13] Y. Wu, S. Chen, P.Luo, S. Deng, Z. Shan, J. Fang, X. Liu, J. Xie, R. Liu, S. Wu, X. Wu, Z. Chen, K. W. K. Yeung, Q. Liu, and Z. Chen, “Optimizing the Bio-Degradability and Biocompatibility of a Biogenic Collagen Membrane through Cross-Linking and Zinc-Doped Hydroxyapatite,” Acta Biomater., vol. 143, no. 1, pp. 159–172, 2022.

[14] R. S. M. Chan, S. J. Lee, F. W. T. Zhou, R. Kishan, H. C. Shum, W. Yang, Y. Su, J. K. H. Tsoi, A. D. Diwan, B. G. Prusty, and K. Cho, “Engineered 3D-Printable Nanohydroxyapatite Biocomposites with Cold Plasma-Tailored Surface Features to Boost Osseointegration,” ACS Appl. Mater. Interfaces, vol. 17, no. 16, pp. 23522–23535, 2025.

[15] I. A. Suci and Y. D. Ngapa, “Sintesis dan Karakterisasi Hidroksiapatit dari Cangkang Kerang Ale-Ale Menggunakan Metode Presipitasi Double Stirring,” Cakra Kim., vol. 8, no. 2, pp. 73–81, 2020.

[16] F. Afifah and S. E. Cahyaningrum, “Synthesis and Characterization of Hydroxyapatite from Cow Bones (Bos Taurus) Using Calcination Techniques,” UNESA J. Chem., vol. 9, no. 3, pp. 189–196, 2020.

[17] K. Sinulingga and M. Sirait, "Hasil Penelitian dan Pembahasan,” in Hidroksiapatit dari Batu Kapur dan Aplikasi, Medan, Indonesia: Yayasan Kita Menulis, 2021, ch.4, pp. 31-41.

[18] M. K. Alam, M. S. Hossain, M. K. N. M. Bahadur, and S. Ahmed, “Synthesis of Nano-Hydroxyapatite Using Emulsion, Pyrolysis, Combustion, and Sonochemical Methods and Biogenic Sources: A Review,” RSC Adv., vol. 14, no. 5, pp. 3548–3559, 2024.

[19] Y. Inayah, A. S. P. Anggraeni, and A. D. Karisma, “Pembuatan Biokompatibel Komposit dari Nano Hidroksiapatit Berbahan Dasar Cangkang Keong Sawah (Pila ampullacea) dengan Kombinasi Biopolimer PVA (Polyvinyl Alcohol) sebagai Bahan Dasar Pembuatan Suture Anchor,” J. Teknol., vol. 11, no. 1, pp. 58–66, 2023.

[20] N. S. Andyana, A. R. Amalia, and K. Sumada, “Kajian Hidroxyapatite dari Cangkang Kupang Putih dan Asam Fosfat,” Chempro, vol. 2, no. 3, pp. 1–6, 2021.

[21] S. K. Padmanabhan, P. Nitti, E. Stanca, A. Rochira, L. Siculella, M. Grazia Raucci, M. Madaghiele, A. Licciulli, and C. Demitri, “Mechanical and Biological Properties of Magnesium and Silicon Substituted Hydroxyapatite Scaffolds,” Materials., vol. 14, no. 22, pp. 1-16, Nov. 2021.

[22] W. J. M. Bay and L. Pulungan, “Pemanfaatan Bahan Galian Mineral Kalsit Berdasarkan Karakteristik Sifat Fisik di Cikembar Sukabumi,” J. Ris. Tek. Pertamb., vol. 2, no. 1, pp. 41–48, 2022.

[23] C. A. Asnur, M. I. Juradi, and M. Arifin, “Analisis Komposisi Kimia Batugamping di Daerah Leang-Leang Kabupaten Maros,” J. Energy Miner. Resour., vol. I, no. 1, pp. 1–8, 2023.

[24] F. M. Gasperini, G. V. O. Fernandes, F. F. M. M. D. Calasans-Maia, E. Mavropoulos, A. M. Rossi, and J. M. Granjeiro, “Histomorphometric Evaluation, SEM, and Synchrotron Analysis of the Biological Response of Biodegradable and Ceramic Hydroxyapatite-Based Grafts: From the Synthesis to the Bed Application,” Biomed. Mater., vol. 18, no. 6, pp. 1-16, 2023.

[25] N. H. Alotaibi, M. U. Munair, N. K. Alruwaili, K. S. Alharbi, A. I. A. S. Almurshedi, I. U. Khan, S. N. A. Bukhari, and M. Rehman, “Synthesis and Characterization of Antibiotic–Loaded Biodegradable Citrate Functionalized Mesoporous Hydroxyapatite Nanocarriers as an Alternative Treatment for Bone Infections,” Pharmaceutics, vol. 14, no. 5, pp. 1-13, 2022.

[26] M. Sirait and M. Aulia, “Sintesis dan Uji Sitotoksisitas Hidroksiapatit Batu Kapur Sebagai Bahan Graft Tulang,” J. Einstein, vol. 9, no. 3, pp. 18-25, 2021.

[27] T. ATEŞ, S. KESER, A. A. KORKMAZ, N. BULUT, and O. KAYGİLİ, “NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu,” Int. J. Innov. Eng. Appl., vol. 6, no. 1, pp. 48–54, 2022.

[28] F. E. BAŞTAN, O. KARAARSLAN, and F. ÜSTEL, “Biyomedikal Uygulamalar için Wollastonit Partikül Takviyeli Hidroksiapatit Kompozit Granüllerin Üretilmesi ve Karakterizasyonu,” Deu Muhendis. Fak. Fen ve Muhendis., vol. 23, no. 67, pp. 1–9, 2021.

[29] A.L. Rosa, L. R. Farias, V. P. Dias, O. B. Pacheco, F. D. P. Morisso, L. F. Rodrigues, M. R. Sagrillo, A. Rossato, L. L. Santos, and T. M. Volkmer, “Effect of Synthesis Temperature on Crystallinity, Morphology and Cell Vibability of Nanostructured Hydroxyapatite Via Wet Chemical Precipitation Method,” Int. J. Adv. Med. Biotechnol., vol. 5, no. 1, pp. 29-35, 2022.

[30] M. Sirait, K. Sinulingga, N. Siregar, and Y. F. Damanik, Synthesis and Characterization of Hydroxyapatite From Broiler Eggshell: Open The 1st International Conference on Physics and Applied Physics (The 1st ICP&AP), March 31 2020, Medan, Indonesia.

[31] R. Bemis, Heriyanti, Rahmi, R. D. Puspitasari, and D. Imawati, “Pengaruh Variasi Konsentrasi Alumina Pada Sintesis Nanokomposit Hidroksiapatit/ Alumina dari Udang Papai Menggunakan Metode Hidrotermal,” J. Indones. Soc. Integr. Chem., vol. 15, no. 1, pp. 56–66, 2023.

[32] K. Niziołek, D. Słota, J. Sadlik, E. Łachut, W. Florkiewicz, and A. Sobczak-Kupiec, “Influence of Drying Technique on Physicochemical Properties of Synthetic Hydroxyapatite and Its Potential Use as a Drug Carrier,” Materials (Basel)., vol. 16, no. 19, pp. 1-12, 2023.

[33] S. Belouafa, H. Chaair, and K. Digua, “Oxygenated Apatites : Effect of Calcium Salt Nature and Synthesis Parameters,” vol. 14, no. 4, pp. 26–33, 2022.

[34] K. Benataya, M. Lakrat, O. Hammani, M. Aaddouz, Y. Ait Yassine, H. A. Abuelizz, A. Zarrouk, K. Karrouchi, and E. Mejdoubi, “Synthesis of High-Purity Hydroxyapatite and Phosphoric Acid Derived from Moroccan Natural Phosphate Rocks by Minimizing Cation Content Using Dissolution–Precipitation Technique,” Molecules, vol. 29, no. 16, pp. 1-15, 2024.

[35] M. Eriksson, K. Sandström, M. Carlborg, and M. Broström, “Impact of Limestone Surface Impurities on Quicklime Product Quality,” Minerals, vol. 14, no. 3, pp. 1–13, 2024.

[36] V. S. Bystrov, E. V. Paramonova, L. A. Avakyan, N. V. Eremina, S. V. Makarova, and N. V. Bulina, “Effect of Magnesium Substitution on Structural Features and Properties of Hydroxyapatite,” Materials., vol. 16, no. 17, pp. 1-26, 2023.

[37] M. Safarzadeh, S. Ramesh, and C. Y. Tan, “Sintering behaviour of carbonated hydroxyapatite prepared at different carbonate and phosphate ratios,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 38, no. 7, pp. 1807–1819, 2020.

[38] H. Copete, E. López, and C. Baudin, “Synthesis and Characterization of B-Type Carbonated Hydroxyapatite Materials: Effect of Carbonate Content on Mechanical Strength and In vitro Degradation,” Bol. la Soc. Esp. Ceram. y Vidr., vol. 63, no. 4, pp. 255–267, 2023.

[39] K. Benataya, M. Lakrat, L. L. Elansari, and E. Mejdoubi, “Synthesis of B-type carbonated hydroxyapatite by a new dissolution-precipitation method,” Mater. Today Proc., vol. 31, no. 2, pp. S83–S88, 2020.

[40] H. A. Permatasari, M. Sari, Aminatun, T. Suciati, K. Dahlan, and Y. Yusuf, “Nano-carbonated hydroxyapatite precipitation from abalone shell (Haliotis asinina) waste as the bioceramics candidate for bone tissue engineering,” Nanomater. Nanotechnol., vol. 11, pp. 1–9, 2021.

Author Biographies

Gede Arya Amerta, Department of Physics and Science Education, Faculty of Mathematics and Natural Sciences, Ganesha University of Education, Indonesia

Ida Bagus Putu Mardana, Department of Physics and Science Education, Faculty of Mathematics and Natural Sciences, Ganesha University of Education, Indonesia

Putu Yasa, Department of Physics and Science Education, Faculty of Mathematics and Natural Sciences, Ganesha University of Education, Indonesia

Downloads

Download data is not yet available.

How to Cite

Amerta, G. A., Mardana, I. B. P., & Yasa, P. (2025). SYNTHESIS OF NANOHYDROXYAPATITE FROM BUKIT JIMBARAN LIMESTONE. Indonesian Physical Review, 9(1), 27–38. https://doi.org/10.29303/ipr.v9i1.548

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.