FORMULATION OPTIMIZATION OF SWAMP VEGETATION NATURAL DYES FOR DSSC USING SIMPLEX LATTICE DESIGN
DOI:
10.29303/ipr.v9i1.528Downloads
Abstract
Dye-sensitized solar cells (DSSC) are third-generation photovoltaic devices capable of using natural pigments as photosensitizers. This study aims to optimize the efficiency of DSSC by using formulations of a combination of natural dyes extracted from swamp vegetation: water hyacinth (Eichhornia crassipes), senduduk fruit (Melastoma malabathricum), and primrose willow (Ludwigia peruviana). These dyes, which are rich in chlorophyll, anthocyanins, and carotenoids, respectively, were formulated in different volume combinations using the Simplex Lattice Design (SLD) method. The experimental results show that the mixture of natural dyes can expand the absorption range of visible light wavelengths and enhance the performance of DSSC. The optimal dye combination, consisting of 1.827 mL water hyacinth and 3.173 mL senduduk fruit, yielded an efficiency of 0.050% with a desirability score of 1. This study highlights the potential of swamp vegetation as a sustainable and low-cost alternative for DSSC applications and demonstrates the effective use of statistical modeling to optimize dye formulations.
Keywords:
Optimization Natural dye Swamp vegetation Efficiency Simplex Lattice DesignReferences
[1] A. M. Ibrahim, B. Situmeang, A. Rifa’i, and A. H. Mustafid, “Utilization of leaf and fruit extracts of kedondong (Spondias dulcis Forst) as a supporting material for energy conversion in dye sensitized solar cells and electrochemical cells,” J. Pendidik. Kim., vol. 13, no. 1, pp. 10–21, 2021.
[2] J.H. Kim, D.-H. Kim, J.-H. So, and H.-J. Koo, “Toward Eco-Friendly Dye-Sensitized Solar Cells (DSSC): Natural Dyes and Aqueous Electrolytes,” Energies, vol. 15, no. 1, p. 219, 2022.
[3] U. Mahajan, K. Prajapat, M. Dhonde, P. Shirage, and K. Sahu, “The Evolution of Natural Dye-Sensitized Solar Cells: Current Advances and Future Outlook,” Sol. Energy, vol. 284, 2024.
[4] F. E. Mesrar, H. Tachallait, K. Bougrin, and R. Benhida, “Ultrasound-assisted extraction of vegetable dyes and mordants from wool dyed with Curcuma longa and Reseda luteola,” Ind. Crops Prod., vol. 208, 2024.
[5] A. A. Rasyid, D. H. S. Maha, M. Irwanto, and R. T. Ginting, “Analisis efisiensi dye sensitized solar cell (DSSC) yang terbuat dari ekstrak buah naga merah sebagai pewarna dye,” RELE: J. Tek. Elektro, vol. 8, no. 1, pp. 268–273, 2025.
[6] A. Ashari and M. Muslimin, “Analisis Performa DSSC dengan Ekstrak Daun Pepaya terhadap Lama Perendaman Kaca ITO (Kajian Teori),” J. Kreatif Online, vol. 12, no. 4, pp. 1–11, 2024.
[7] M. Mustaqim, A. Haris, and G. Gunawan, “Fabrikasi Dye-Sensitized Solar Cell Menggunakan Fotosensitizer Ekstrak Bunga Rosela (Hibiscus sabdariffa L) dan Elektrolit Padat Berbasis PEG,” J. Kim. Sains Apl., vol. 20, no. 2, pp. 62–67, 2017.
[8] A. N. Ossai, S. C. Ezike, P. Timtere, and A. D. Ahmed, “Enhanced photovoltaic performance of dye-sensitized solar cells-based Carica papaya leaf and black cherry fruit co-sensitizers,” Elsevier, vol. 2, pp. 1–8, 2021.
[9] D. Sinha, D. De, and A. Ayaz, “Photo-sensitizing and electrochemical performance analysis of mixed natural dye and nanostructured ZnO-based DSSC,” Sādhanā, vol. 45, no. 175, 2020.
[10] I. Trianiza, “Uji Spektrum Cahaya Eceng Gondok (Eichornia Crassipes) Sebagai Absorber Pada Dye Sensitized Solar Cell (DSSC),” J. Ind. Eng. Oper. Manag. (JIEOM), vol. 3, no. 1, 2020.
[11] R. Luli, “Preparasi Dye-Sensitized Solar Cell (DSSC) Berbasis Dye dari Buah Senduduk (Melastoma malabathricum L.) dengan Variasi Tegangan Elektrodeposisi Cu pada TiO2,” J. Residu, vol. 3, no. 21, pp. 93–101, Sep. 2019.
[12] H. Hower and F. Pratama, “Performance of primrose willow (Ludwigia peruviana) as a photosensitizer in dye-sensitized solar cell (DSSC),” in IOP Conf. Ser.: Earth Environ. Sci., vol. 1025, no. 1, p. 012015, May 2022.
[13] M. A. Al-Alwani, H. A. Hasan, N. K. Al-Shorgani, and A. B. Al-Mashaan, “Natural dye extracted from Areca catechu fruits as a new sensitiser for dye-sensitised solar cell fabrication: Optimisation using D-Optimal design,” Mater. Chem. Phys., vol. 240, pp. 1–9, 2020.
[14] N. Aziz, N. A. Mat Nor, and A. K. Arof, “Optimization of anthocyanin extraction parameters from M. malabathricum via response surface methodology to produce a natural sensitizer for dye-sensitized solar cells,” Opt. Quant. Electron, vol. 52, no. 1, 2019.
[15] K. Gasga, “Pilictricity: Fabrication and Optimization of Dye Sensitized Solar Cell using Pili (Canarium ovatum) Dye and Activated Carbon as Sensitizer and Counter Electrode,” Int. J. Adv. Sci. Technol., vol. 29, no. 12, pp. 776–783, 2020.
[16] M. J. Salinas and M. J. Ariza, “Optimizing a Simple Natural Dye Production Method for Dye-Sensitized Solar Cells: Examples for Betalain (Bougainvillea and Beetroot Extracts) and Anthocyanin Dye,” Appl. Sci., vol. 9, pp. 1–20, 2019.
[17] K. Farabi, W. A. Subaidah, and N. I. Hanifa, “Optimasi Pelarut Pada Ekstraksi Senyawa Fenolik Dari Daun Kelor (Moringa oleifera L.) Menggunakan Simplex Lattice Design,” Unram Medical Journal, vol. 12, no. 1, pp. 1258–1264, 2023.
[18] C. Monton, P. Chuanchom, P. Popanit, S. Settharaksa, and P. Pathompak, “Simplex lattice design for optimization of the mass ratio of Curcuma longa L., Curcuma zedoaria (Christm.) Roscoe and Curcuma aromatica Salisb. to maximize curcuminoids content and antioxidant activity,” Acta Pharm., vol. 71, no. 3, pp. 445–457, 2021.
[19] C. T. Oloyede et al., “Synthesis of Biobased Composite Heterogeneous Catalyst for Biodiesel Production Using Simplex Lattice Design Mixture: Optimization Process by Taguchi Method,” Energies, vol. 16, pp. 1–26, 2023.
[20] M. Patel, F. Shaikh, V. Patel, and N. Surti, “Optimization of Glipizide Floating Matrix Tablet Using Simplex Lattice Design,” Indian J. Pharm. Sci., pp. 306–315, 2021.
[21] A. H. Rad, H. R. Pirouzian, O. S. Toker, and N. Konar, “Application of simplex lattice mixture design for optimization of sucrose-free milk chocolate produced in a ball mill,” LWT - Food Sci. Technol., vol. 115, pp. 1–10, 2019.
[22] J. Li, T. Zeng, Y. Zhai, Z. Qu, and H. Li, “Intermolecular resonance energy transfer between two lutein pigments in light-harvesting complex II studied by Frenkel exciton models,” Phys. Chem. Chem. Phys., vol. 25, no. 36, pp. 24636–24642, 2023.
[23] Yadav, V., Soni, Y., Negi, C. M. S., Gupta, S. K., & Kumar, U. (2022). Role of natural dye in photovoltaic performance of dye-sensitized solar cell. Materials Today: Proceedings, 68, 2781-2784.
[24] Y. Yan, Y. Zhang, Y. Liu, Y. Shi, D. Qiu, D. Deng, J. Zhang et al., “Simultaneously decreasing the bandgap and Voc loss in efficient ternary organic solar cells,” Adv. Energy Mater., vol. 12, no. 20, p. 2200129, 2022.
[25] M. E. Dandara, R. K. Pingak, and A. Z. Johannes, “Estimasi Celah Energi Senyawa Hasil Ekstrak Daun Sirsak (Annona muricata L) Menggunakan Metode Tauc Plot,” J. Fis., vol. 4, no. 1, pp. 48–51, 2019.
[26] J. Sobus and M. Ziółek, “Optimization of absorption bands of dye-sensitized and perovskite tandem solar cells based on loss-in-potential values,” Phys. Chem. Chem. Phys., vol. 16, no. 27, 2014.
[27] O. U. Rahayu, Malahayati, and E. Harnelly, “Studi Serapan Cahaya Dye Alami Hasil Ekstrak Daun Suji dan Buah Senduduk,” J. Aceh Phys. Soc., vol. 7, no. 2, pp. 106–109, 2018.
[28] P. Setiarso and R. Sova, “Potential Dye Suji Leaves (Pleomele angustifolia) Chlorophyll and Red Dragon Fruit Peel (Hylocereus polyrhizus) Anthocyanins as Natural Dyes for Dye-Sensitized Solar Cells,” Asian J. Chem., vol. 35, no. 4, 2023.
[29] M. Al-Alwani, N. Ludin, A. Mohamad, A. Kadhum, and A. Mukhlus, “Application of dyes extracted from Alternanthera dentata leaves and Musa acuminata bracts as natural sensitizers for dye-sensitized solar cells,” Spectrochim. Acta A Mol. Biomol. Spectrosc., vol. 192, pp. 487–498, 2018.
[30] Y. Yan et al., “Simultaneously Decreasing the Bandgap and Voc Loss in Efficient Ternary Organic Solar Cells,” Adv. Energy Mater., vol. 22, 2022.
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

