DELINEATING RESISTIVITY VALUES OF POTENTIAL GEOTHERMAL AREAS ALONG THE BOGOR FAULT USING 2D MAGNETOTELLURIC INVERSION
Authors
Debi Hardiansa , M Farid , Arif Ismul Hadi , Andre Rahmat Al-Ansory , Hana Raihana , Nurul 'Ilmi RahmawatiDOI:
10.29303/ipr.v8i2.431Published:
2025-05-08Issue:
Vol. 8 No. 2 (2025)Keywords:
Geothermal, Kepahiang, Magnetotelluric, Resistivity, Bogor segmentArticles
Downloads
How to Cite
Abstract
Kepahiang Regency, located in an active fault zone, has great geothermal potential with an estimated capacity of up to 154 MW(e), making it a strategic renewable energy source to be developed. This research discusses the geothermal potential in the Kabawetan area, Kepahiang, Bengkulu. The main objective of this research is to evaluate the potential of geothermal resources around the Bogor segment by analyzing the subsurface structure using the Magnetotelluric inversion method and 2D resistivity modeling, in order to identify prospective geothermal reservoir zones. It can evaluate the potential of geothermal reservoirs in Kepahiang. The method used is the Magnetotelluric method, which utilizes the Earth's natural electromagnetic field to determine the distribution of resistivity in the subsurface. The results of 2D modeling with the MT method show potential zones associated with variations in subsurface thermal conditions and the presence of conductive clay minerals with resistivity values between 0.14-1 Ωm. These minerals are thought to be associated with the overburden (reservoir) of the geothermal system that has a depth of 2-4 km. The subsurface layer containing hot water and steam originating from heat emitted from the earth's core with a resistivity value of 2.5-45 Ωm at a depth of 1-4 km is thought to be caprock in the geothermal system, a resistivity value of 120-800 Ωm is thought to be hot rock with a depth between 1.5-10 km. It is estimated that there is a type of andesite rock that has been fractured as a reservoir of geothermal fluid. The findings of this research are expected to contribute to renewable energy as an alternative energy in the future, not only for energy needs but also for regional economic development through tourism and to support sustainable governance.References
I. D. Natasya, M. P. Larang, E. G. Gatra Putri, and R. R. Refrizon, “Upaya Mitigasi Bencana Longsor Jalan Lintas Bengkulu-Kepahiang Berdasarkan Kecepatan Gelombang Geser (Vs),” Newton-Maxwell J. Phys., vol. 3, no. 1, pp. 33–37, 2022.
A. S. Mulyani, “Pemanasan Global, Penyebab, Dampak dan Antisipasinya,” 2021.
H. Meilani and D. Wuryandani, “Potensi Panas Bumi sebagai Energi Alternatif Pengganti Bahan Bakar Fosil untuk Pembangkit Tenaga Listrik di Indonesia,” J. Ekon. dan Kebijak. Publik, vol. 1, no. 1, pp. 47–74, 2010, [Online]. Available: http://www.esdm.go.id/siaran-pers/55-siaran-pers/3271-pelaksanaan-program-prioritas-
J. Elvis, E. Suparman, and Idris, “Hukum Pengelolaan Sumber Daya Minyak Dan Gas Bumi Menurut Pasal 33 Undang-Undang Dasar Tahun 1945,” Iblam Law Rev., vol. 3, no. 3, pp. 14–29, 2023.
L. Ambarwati, “Pemetaan dan Analisa PGA Maksimum Gempabumi Pada Provinsi Aceh Periode 2012 - 2017 dengan Metode Atenuasi,” 2020.
I. Muttaqien and J. Nurjaman, “TMuttaqien, I., & Nurjaman, J. (2021). Two-Dimensional Inversion Modeling of Magnetotelluric (Mt) Synthetic Data of A Graben Structure Using SimPEG. RISET Geologi Dan Pertambangan, 31(1), 1. https://doi.org/10.14203/risetgeotam2021.v31.1121WO-DIMENSIONAL ,” Ris. Geol. dan Pertamb., vol. 31, no. 1, p. 1, 2021, doi: 10.14203/risetgeotam2021.v31.1121.
Ghefra Rizkan Gaffara, Korelasi Perubahan Penggunaan Lahan Dan Variabel Lain Sebagai Pemicu Amblesan Tanah. 2018.
R. S. Sesesega, “Pengaruh Tektonik Sesar Sumatera Terhadap Pembentukan Struktur Geologi Daerah Lebong Selatan, Kabupaten Lebong, Provinsi Bengkulu Rhyno Senbyla Sesesega, Salahuddin Husein, S.T., M.Sc., Ph.D.,” 2015.
A. AL BASHRI, “Pemodelan Inversi 2-D Data Magnetotelurik Pada Lapangan Panas Bumi ‘Basri’ Sulawesi Barat,” Institut Teknologi Sepuluh Nopember, 2018.
A. M. Lubis, D. Anggini, L. Puspitasari, and M. Farid, “Preliminary 2.5D Geothermal Distribution in Kepahiang Region Deduced by Inversion Magnetotelluric (MT) Data,” AIP Conf. Proc., vol. 2320, no. March, 2021.
Nanang Sugianto, Refrizon, and P. Simbolon, “3D Deliniation of Geological Structure of Kepahiang Geothermal Area, Indonesia,” Gravitasi, vol. 21, no. 2, pp. 69–80, 2022.
R. F. Herlambang and K. Novranza, “Pemetaan Kelurusan Menggunakan Remote Sensing Dan Korelasinya Terhadap Distribusi Manifestasi Permukaan Di Daerah Potensi Geothermal Kepahiang, Bengkulu,” vol. V, pp. SNF2016-EPA-57-SNF2016-EPA-64, 2016.
M. Farid, Refrizon, D. Oktiana Andeska, and A. Ismul Hadi, “Stratification characteristics of subsurface rock structure geothermal manifestations at Telaga Tujuh Warna Bukit Daun, Bengkulu, Indonesia using magnetic methods,” J. Phys. Conf. Ser., vol. 2498, no. 1, 2023.
A. I. Hadi and K. S. Brotopuspito, “Estimasi Kedalaman Bidang Batas Sesar dari Data Gravitasi di Daerah Rawan Gerakan Tanah (Studi Kasus: Sesar Sumatra Segmen Musi Bengkulu),” SIMETRI, J. Ilmu Fis. Indones., vol. 2, no. 2, pp. 2207-37:2207-42, 2016.
E. Septiana Putriutami et al., “Interpretasi Lapisan Bawah Permukaan Di Area Panas Bumi Gunung Telomoyo, Kabupaten Semarang Menggunakan Metode Geolistrik Resistivity Konfigurasi Schlumberger,” Youngster Phys. J., vol. 3, no. 2, pp. 97–106, 2014.
Y. Y. Thoriq Muzakki Yudistian, Fajar Hendrasto, “Penentuan Top Reservoir Panas Bumi Daerah Tulehu Berdasarkan Pemodelan 3D Menggunakan Data Geokimia, Log Pada Sumur X Dan Interpretasi Data Magnetotellurik (Mt),” J. Geosci. Eng. Energy, vol. IV, no. 1, pp. 104–115, 2022.
N. Mashila, “Analisis penentuan arah geoelectric strike dan dimensionalitas bawah permukaan wilayah Kabupaten Timor Tengah Selatan, NTT dengan metode audio magnetotellurik (AMT),” 2021.
S. Gafoer, T. C. Amin, and R. Pardede, “Geological Map of The Bengkulu Quad-rangles,” Sumatra, scale, vol. 1, no. 250.00, 1992.
B. F. Landung, D. R. Wenas, J. G. N. Nusa, and C. A. N. Bujung, “Pola Gradien Temperatur Bawah Permukaan Dangkal Manifestasi Panas Bumi Desa Noongan Tiga Kabupaten Minahasa,” J. FisTa Fis. dan Ter., vol. 3, no. 2, pp. 12–18, 2022.
A. Basid, N. Andrini, and S. Arfiyaningsih, “Pendugaan Reservoir Sistem Panas Bumi Dengan Menggunakan Survey Geolistrik, Resistivitas dan Self Potensial (Studi Kasus: Daerah Manifestasi Panas Bumi di Desa Lombang, Kecamatan Batang-Batang, Sumenep),” J. Neutrino, vol. 7, no. 1, p. 57, 2014.
S. A. Raharjo, A. V. Saputra, and T. Rahadinata, “Identifikasi struktur geologi bawah permukaan berdasarkan pemodelan 3D data gravitasi (studi kasus daerah potensi panas bumi Kepahiang) Sukmaji,” J. Teras Fis., vol. 5, no. 2, p. 28, 2022.
P. A. Sihombing, A. I. Hadi, R. Refrizon, and H. Zakariya, “Identification of the distribution of geothermal reservoirs around Kepahiang Bengkulu Province using GGMPlus gravity data anomalies by the 2D inversion method,” J. Aceh Phys. Soc., vol. 13, no. 1, pp. 1–8, 2024.
M. F. S. Intan and F. Manurung, “Geologi Situs Ciomas Di Kabupaten Sukabumi: Kajian Sumber Batuan Untuk Bahan Litik,” Naditira Widya, vol. 16, no. 1, pp. 73–84, 2022.
A. Setyani, Investigasi bawah permukaan segmen cibeber zona sesar cimandiri, jawa barat dengan metode audio magnetotelurik (amt). 2017.
A. Rizky, “Perancangan Tengger Volcano Center Dengan Pendekatan Arsitektur Simbolisme,” Sustain., vol. 11, no. 1, pp. 1–14, 2019, [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_Sistem_Pembetungan_Terpusat_Strategi_Melestari
W. Triyoso, A. Suwondo, T. Yudistira, and D. P. Sahara, “Seismic Hazard Function (SHF) study of coastal sources of Sumatra Island: SHF evaluation of Padang and Bengkulu cities,” Geosci. Lett., vol. 7, no. 1, 2020.
R. Irwanto, H., Jaya, D., Miansyah, A., Septiawan, A., Girsang, “‘Laporan Akhir Inventarisasi Mineral dan Batuan Tahun Anggaran 2013 ; Dinas Pertambangan Energi dan Sumber Daya Mineral Kabupaten Kepahiang: Kepahiang, Indonesia’.,” 2013.
A. Firdasari, “Geologi Dan Karakteristik Petrografi Batuan Vulkanik Formasi Hulusimpang Daerah Temdak dan Sekitarnya, Kabupaten Kepahiang, Provinsi Bengkulu,” 2018.
F. P. Nasution, “Analisis Pengaruh Robust Processing Terhadap Koherensi Sinyal Pada Pemodelan 2D Data Magnetotelurik di Daerah Gunung Endut,” 2021.
A. R. Al Ansory et al., “Delineasi Nilai Resistivitas Di Lapangan Panas Bumi Tambang Sawah Menggunakan Metode Magnetotellurik,” Bul. Sumber Daya Geol., vol. 18, no. 3, pp. 145–154, 2023.
R. Sukowati, “Identifikasi Panas Bumi Menggunakan Metode Audio Magnetotelurik (AMT),” Researchgate.Net, no. December 2020, 2022, [Online]. Available: https://www.researchgate.net/profile/Riris-Sukowati/publication/365853560_Identifikasi_Panas_Bumi_Menggunakan_Metode_Audio_Magnetotelurik_AMT/links/63872ef2fee13e4fe52be65e/Identifikasi-Panas-Bumi-Menggunakan-Metode-Audio-Magnetotelurik-AMT.pdf
U. H. dan T. Y. Riznia Aji Salam, “Pemodelan 2D Sistem Pana Bumi Daerah Garut Bagian Timur Menggunakan Metode Magnetotelurik,” Youngster Phys. J., vol. 6, no. 2, pp. 143–150, 2017.
L. Rahmawati, “Analisis Sistem Panasbumi Menggunakan Metode Magnetotellurik dan Geokimia di Daerah Prospek Panasbumi Waesano, Nusa Tenggara Timur,” 2023.
P. Simbolon, R. Refrizon, and N. Sugianto, “Peta Sebaran Intensitas Anomali Magnetik Di Daerah Prospek Geothermal Kepahiang Berdasarkan Survei Metode Geomagnet,” Newton-Maxwell J. Phys., vol. 1, no. 1, pp. 7–12, 2020.
D. Andini, P. Lepong, and A. I. Natalisanto, “Identifikasi Kawasan Zona Panas Bumi (Geothermal) Di Daerah X Menggunakan Metode Magnetotellurik 1,” J. Geosains Kutai Basin, vol. 3, no. 1, pp. 1–8, 2020.
M. Farid, A. I. Hadi, and L. P. Sari, “Investigation of Geothermal Using Magnetotelluric Method in Babakan Bogor, Bengkulu Province, Indonesia,” Indones. J. Geosci., vol. 8, no. 2, pp. 221–231, Aug. 2021.
M. Farid, A. I. Hadi, H. Suhartoyo, A. R. Al Ansory, and H. Raihana, “A Preliminary Geothermal Prospect Investigation in Lemeu, Northeast Lebong, Indonesia, Using Magnetotelluric Method,” Iraqi Geol. J., pp. 245–257, 2025.
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).