Vol. 8 No. 1 (2025)
Open Access
Peer Reviewed

MODELING OF THREE-DIMENSIONAL SUBSURFACE STRUCTURES BASED ON GRAVITY ANOMALY IN SOUTHWEST SUMBA INDONESIA

Authors

Adinda Novitri , Relly Margiono , Anggi Pevriadi , Hilmi Zakariya , Yan Adi Segoro

DOI:

10.29303/ipr.v8i1.388

Downloads

Received: Aug 29, 2024
Accepted: Jan 10, 2025
Published: Jan 10, 2025

Abstract

Modeling subsurface conditions using gravity anomaly data, focusing on density contrasts, provides critical insights into subsurface structures and supports identifying rock types. This study aims to define residual gravity anomalies in the Sumba region and utilize them to develop a three-dimensional subsurface model of Southwest Sumba, characterizing density contrasts and associated rock formations. Gravity data from the TOPEX dataset were employed in this research. The Airy isostasy model was applied to separate regional and residual anomalies, followed by a three-dimensional inversion using the Generalized Cross-Validation (GCV) method. The results reveal residual gravity anomalies range from -170 mGal to 211 mGal, with the Java Trench exhibiting the highest anomaly. The 3D modeling shows a relatively homogeneous density contrast at shallow depths, transitioning to more erratic variations at greater depths, extending to 15 km beneath Southwest Sumba Island. Furthermore, the calculated densities are consistent with the region's known geological background. The Java Trench, located south of Sumba, notably demonstrates a consistently high-density contrast from shallow to deeper depths, highlighting its tectonic complexity.

Keywords:

Faults, Gravity Anomaly, Modeling

References

M. G. Audley-Charles, “Ocean trench blocked and obliterated by Banda forearc collision with Australian proximal continental slope,†Tectonophysics, vol. 389, no. 1–2, pp. 65–79, Sep. 2004, doi: 10.1016/j.tecto.2004.07.048.

R. Hall, “Australia–SE Asia collision: plate tectonics and crustal flow,†Geological Society of London, vol. 355(1), no. Special Publications, pp. 75–109, 2011.

P. Supendi et al., “Fate of Forearc Lithosphere at Arc-Continent Collision Zones: Evidence from Local Earthquake Tomography of the Sunda-Banda Arc Transition, Indonesia,†Geophys Res Lett, vol. 47, no. 6, Mar. 2020, doi: 10.1029/2019GL086472.

W. J. F. Simons et al., “A decade of GPS in Southeast Asia: Resolving Sundaland motion and boundaries,†J Geophys Res Solid Earth, vol. 112, no. 6, Jun. 2007, doi: 10.1029/2005JB003868.

H. Nugroho, R. Harris, A. W. Lestariya, and B. Maruf, “Plate boundary reorganization in the active Banda Arc-continent collision: Insights from new GPS measurements,†Tectonophysics, vol. 479, no. 1–2, pp. 52–65, Dec. 2009, doi: 10.1016/j.tecto.2009.01.026.

S. J. Hutchings and W. D. Mooney, “The Seismicity of Indonesia and Tectonic Implications,†Geochemistry, Geophysics, Geosystems, vol. 22, no. 9, Sep. 2021, doi: 10.1029/2021GC009812.

Hery. Harjono, Seismotektonik busur Sunda. LIPI Press, 2017.

I. Sota, “Pendugaan Struktur Patahan Dengan Metode Gayaberat,†POSITRON, vol. I, no. 1, pp. 25–30, 2011.

Pusat Studi Gempa Nasional, Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman, Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017.

R. J. Blakely, Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, 1995.

Lee-Lueng Fu, “TOPEX/POSEIDON mission overview,†J Geophys Res, vol. 99, no. C12, 1994, doi: 10.1029/94jc01761.

P. N. A. M. Visser, “Gravity Field Determination with Goce And Grace,†1999. [Online]. Available: www.elsevier.nMocate/asr

C. Hirt, M. Kuhn, S. Claessens, R. Pail, K. Seitz, and T. Gruber, “Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model,†Comput Geosci, vol. 73, pp. 71–80, 2014, doi: 10.1016/j.cageo.2014.09.001.

M. Gilardoni, M. Reguzzoni, and D. Sampietro, “GECO: a global gravity model by locally combining GOCE data and EGM2008,†Studia Geophysica et Geodaetica, vol. 60, no. 2, pp. 228–247, Apr. 2016, doi: 10.1007/s11200-015-1114-4.

R. Margiono, A. Novitri, A. Pevriadi, and H. Zakariya, “Analisis Data Gravitasi Untuk Identifikasi Sesar Lokal Penyebab Gempabumi Di Wilayah Barat Daya Sumba Indonesia,†Jurnal Meteorologi dan Geofisika, vol. 22, no. 2, pp. 67–73, 2021, [Online]. Available: http://puslitbang.bmkg.go.id/jmg/index.php/jmg/article/view/824

A. K. Maimuna, E. A. Pramesthi, Y. A. Segoro, and ..., “Analisis Anomali Gaya Berat Menggunakan Metode SVD dan Pemodelan 3D (Studi Kasus Gempa di Kepulauan Togean, Kabupaten Tojo Una-Una, Sulawesi …,†Jurnal Geofisika, vol. 19, no. 01, pp. 17–23, 2021, [Online]. Available: https://178.128.59.82/index.php/jurnal-geofisika/article/view/466

H. Zakariya, R. Margiono, A. Novitri, and A. Pevriadi, “Identifikasi Anomali Gravitasi Di Wilayah Sulawesi Tenggara Berdasarkan Data Gravitasi GGMplus,†PROGRESS: Jurnal Geofisika, vol. 1, no. 1 SE-Articles, pp. 63–68, Jun. 2022, [Online]. Available: https://stmkg.balai2bmkg.id/index.php/pjg/article/view/24

S. Maus and V. Dimri, “Depth estimation from the scaling power spectrum of potential fields?†Geophys J Int, vol. 124, no. 1, pp. 113–120, 1996, doi: 10.1111/j.1365-246X.1996.tb06356.x.

B. G. Dewanto, R. Margiono, Y. A. Segoro, E. Pramesthi, and A. K. Maimuna, “The importance of gravity data for estimating and identifying the sediment thickness of subsurface structure around Majene Sulawesi Barat,†in AIP Conference Proceedings, American Institute of Physics Inc., Feb. 2023. doi: 10.1063/5.0115361.

D. T. Sandwell and W. H. F. Smith, “Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate,†J Geophys Res Solid Earth, vol. 114, no. 1, Jan. 2009, doi: 10.1029/2008JB006008.

E. S. Garcia, D. T. Sandwell, and W. H. F. Smith, “Retracing cryostat-2, Envisat and Jason-1 radar altimetry waveforms for improved gravity field recovery,†Geophys J Int, vol. 196, no. 3, pp. 1402–1422, Mar. 2014, doi: 10.1093/gji/ggt469.

D. T. Sandwell, R. D. Müller, W. H. F. Smith, E. Garcia, and R. Francis, “New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure,†Science (1979), vol. 346, no. 6205, pp. 65–67, Oct. 2014, doi: 10.1126/science.1258213.

D. S. Parasnis, Principles of Applied Geophysics, Fourth. Springer Dordrecht, 1986. Doi: https://doi.org/10.1007/978-94-009-4113-7.

S. R. Soler and L. Uieda, “Gradient-boosted equivalent sources,†Geophys J Int, vol. 227, no. 3, pp. 1768–1783, Dec. 2021, doi: 10.1093/gji/ggab297.

F. a Terra Project et al., “Harmonica v0.7.0: Forward modeling, inversion, and processing gravity and magnetic data,†Aug. 2024, Zenodo. doi: 10.5281/zenodo.13308312.

Y. Li and D. W. Oldenburg, “3-D inversion of gravity data,†1998. [Online]. Available: http://segdl.org/

P. V Sharma, Environmental and Engineering Geophysics. Cambridge: Cambridge University Press, 1997. doi: DOI: 10.1017/CBO9781139171168.

E. Rutherford, K. Burke, and J. Lytwyn, “Tectonic history of Sumba Island, Indonesia, since the Late Cretaceous and its rapid escape into the forearc in the Miocene.†[Online]. Available: www.elsevier.nl/locate/jseaes

Author Biographies

Adinda Novitri, Meteorological, Climatological and Geophysical Agency

Relly Margiono, School of Physic, Chemistry and Earth Sciences, University of - Adelaide, Adelaide

Anggi Pevriadi, Meteorological, Climatological and Geophysical Agency

Hilmi Zakariya, Meteorological, Climatological and Geophysical Agency

Yan Adi Segoro, Meteorological, Climatological and Geophysical Agenc

Downloads

Download data is not yet available.

How to Cite

Novitri, A. ., Margiono, R., Pevriadi, A. ., Zakariya, H., & Segoro, Y. A. . (2025). MODELING OF THREE-DIMENSIONAL SUBSURFACE STRUCTURES BASED ON GRAVITY ANOMALY IN SOUTHWEST SUMBA INDONESIA. Indonesian Physical Review, 8(1), 253–267. https://doi.org/10.29303/ipr.v8i1.388

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.