REVIEW OF ADSORPTION OF HEAVY METALS BY ADSORBENT MnFe2O4 – ZEOLITE IN WATER
Authors
Luh Ayu Melinia , Marzuki Naibaho , Endah Puspita , Ramlan Ramlan , Masno GintingDOI:
10.29303/ipr.v6i2.215Published:
2023-05-02Issue:
Vol. 6 No. 2 (2023)Keywords:
Heavy metal, MnFe2O4, Zeolite, Co-precipitation, and CharacterizationArticles
Downloads
How to Cite
Abstract
The existence of quality water on earth is essential for life and the consumption of existing living things. The problem of water pollution is a matter of great concern in world researchers' management of water resources. Heavy metals have a toxic effect on humans and the environment. This paper reviews the characteristics and methods of synthesis of MnFe2O4 and zeolite materials as adsorbents for removing heavy metal ions in water with critical properties such as surface area, magnetic properties, and adsorption capacity. We have collected data regarding the appropriate method for synthesizing MnFe2O4 and zeolite nano adsorbents. We have accumulated much data on the properties of MnFe2O4 and zeolite materials and the optimum adsorption capacity for heavy metal ions. Experimental factors such as pH, temperature, adsorption capacity, and ionic strength affecting metal ion removal have also been explored.References
S. S. Fiyadh et al., "Review on Heavy Metal Adsorption Processes by Carbon Nanotubes," J. Clean. Prod., vol. 230, pp. 783–793, 2019, doi: 10.1016/j.jclepro.2019.05.154.
A. Issakhov, A. Alimbek, and Y. Zhandaulet, "The Assessment of Water Pollution by Chemical Reaction Products from the Activities of Industrial Facilities: Numerical Study," J. Clean. Prod., vol. 282, p. 125239, 2021, doi: 10.1016/j.jclepro.2020.125239.
A. E. Burakov et al., “Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review,” Ecotoxicol. Environ. Saf., vol. 148, pp. 702–712, 2018, doi: 10.1016/j.ecoenv.2017.11.034.
W. S. Chai et al., "A Review on Conventional and Novel Materials Towards Heavy Metal Adsorption in Wastewater Treatment Application," J. Clean. Prod., vol. 296, p. 126589, 2021, doi: 10.1016/j.jclepro.2021.126589.
S. Zhang et al., "Applications of Water-Stable Metal-Organic Frameworks in the Removal of Water Pollutants: A Review," Environ. Pollut., vol. 291, no. August, p. 118076, 2021, doi: 10.1016/j.envpol.2021.118076.
A. Saravanan et al., "Effective Water/Wastewater Treatment Methodologies for Toxic Pollutants Removal: Processes and Applications Towards Sustainable Development," Chemosphere, vol. 280, p. 130595, 2021, doi: 10.1016/j.chemosphere.2021.130595.
N. C. Joshi, A. Singh, and H. Rajput, "Utilization of Waste Leaves Biomass of Myrica Esculenta for the Removal of Pb(II), Cd(II) and Zn(II) Ions from Waste Waters," Orient. J. Chem., vol. 34, no. 5, pp. 2548–2553, 2018, doi: 10.13005/ojc/340542.
L. Jiang, Q. Ye, J. Chen, Z. Chen, and Y. Gu, "Preparation of Magnetically Recoverable Bentonite–Fe3O4–MnO2 Composite Particles for Cd(II) Removal from Aqueous Solutions," J. Colloid Interface Sci., vol. 513, pp. 748–759, 2018, doi: 10.1016/j.jcis.2017.11.063.
M. Czikkely, E. Neubauer, I. Fekete, P. Ymeri, and C. Fogarassy, "Review of Heavy Metal Adsorption Processes by Several Organic Matters from Wastewaters," Water (Switzerland), vol. 10, no. 10, pp. 1–15, 2018, doi: 10.3390/w10101377.
R. Bhateria and R. Singh, "A Review on Nanotechnological Application of Magnetic Iron Oxides for Heavy Metal Removal," J. Water Process Eng., vol. 31, no. October 2018, p. 100845, 2019, doi: 10.1016/j.jwpe.2019.100845.
A. T. Le, S. Y. Pung, S. Sreekantan, A. Matsuda, and D. P. Huynh, “Mechanisms of Removal of Heavy Metal Ions by ZnO Particles,” Heliyon, vol. 5, no. 4, p. e01440, 2019, doi: 10.1016/j.heliyon.2019.e01440.
M. Corral-Bobadilla, A. González-Marcos, E. P. Vergara-González, and F. Alba-Elías, "Bioremediation of Waste Water to Remove Heavy Metals Using the Spent Mushroom Substrate of Agaricus Bisporus," Water (Switzerland), vol. 11, no. 3, pp. 1–15, 2019, doi: 10.3390/w11030454.
J. Briffa, E. Sinagra, and R. Blundell, “Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans,” Heliyon, vol. 6, no. 9, p. e04691, 2020, doi: 10.1016/j.heliyon.2020.e04691.
C. Tsamo, N. E. Yerima, and E. N. Mua, "Evaluation of the Transport and Mobility of Co(II) in Soils from Agricultural, Waste Dump and an Automobile Repair Shop Sites in Bambili-Cameroon," Environ. Chem. Ecotoxicol., vol. 4, no. November 2021, pp. 29–36, 2022, doi: 10.1016/j.enceco.2021.12.001.
C. B. Tabelin et al., "Copper and Critical Metals Production from Porphyry Ores and E-Wastes: A Review of Resource availability, Processing/Recycling Challenges, Socio-Environmental Aspects, and Sustainability Issues," Resour. Conserv. Recycl., vol. 170, no. April, p. 105610, 2021, doi: 10.1016/j.resconrec.2021.105610.
L. Bulgariu and D. Bulgariu, Functionalized Soy Waste Biomass - A Novel Environmental-Friendly Biosorbent for the Removal of Heavy Metals from Aqueous Solution, vol. 197. Elsevier Ltd, 2018. doi: 10.1016/j.jclepro.2018.06.261.
A. Iqbal, M. R. Jan, and J. Shah, "Recovery of Cadmium, Lead and Nickel from Leach Solutions of Waste Electrical and Electronic Equipment using Activated Carbon Modified with 1-(2-Pyridylazo)-2-Naphthol," Hydrometallurgy, vol. 201, no. January, p. 105570, 2021, doi: 10.1016/j.hydromet.2021.105570.
S. M. Samaei, S. Gato-Trinidad, and A. Altaee, "Performance Evaluation of Reverse Osmosis Process in the Post-Treatment of Mining Wastewaters: Case Study of Costerfield Mining Operations, Victoria, Australia," J. Water Process Eng., vol. 34, no. September 2019, p. 101116, 2020, doi: 10.1016/j.jwpe.2019.101116.
L. Dong, L. Hou, Z. Wang, P. Gu, G. Chen, and R. Jiang, “A New Function of Spent Activated Carbon in BAC Process: Removing Heavy Metals by Ion Exchange Mechanism,” J. Hazard. Mater., vol. 359, pp. 76–84, 2018, doi: 10.1016/j.jhazmat.2018.07.030.
Y. Zhang and X. Duan, "Chemical Precipitation of Heavy Metals from Wastewater by Using the Synthetical Magnesium Hydroxy Carbonate," Water Sci. Technol., vol. 81, no. 6, pp. 1130–1136, 2020, doi: 10.2166/wst.2020.208.
Y. J. Shih, S. K. Chien, S. R. Jhang, and Y. C. Lin, "Chemical Leaching, Precipitation and Solvent Extraction for Sequential Separation of Valuable Metals in Cathode Material of Spent Lithium Ion Batteries," J. Taiwan Inst. Chem. Eng., vol. 100, pp. 151–159, 2019, doi: 10.1016/j.jtice.2019.04.017.
S. Wadhawan, A. Jain, J. Nayyar, and S. K. Mehta, "Role of Nanomaterials as Adsorbents in Heavy Metal Ion Removal from Waste Water: A Review," J. Water Process Eng., vol. 33, no. June 2019, p. 101038, 2020, doi: 10.1016/j.jwpe.2019.101038.
M. R. Awual, M. M. Hasan, A. Islam, A. M. Asiri, and M. M. Rahman, "Optimization of an Innovative Composited Material for Effective Monitoring and Removal of Cobalt(II) from Wastewater," J. Mol. Liq., vol. 298, no. Ii, p. 112035, 2020, doi: 10.1016/j.molliq.2019.112035.
R. Asadi, H. Abdollahi, M. Gharabaghi, and Z. Boroumand, "Effective Removal of Zn (II) Ions from Aqueous Solution by the Magnetic MnFe2O4 and CoFe2O4 Spinel Ferrite Nanoparticles with Focuses on Synthesis, Characterization, Adsorption, and Desorption," Adv. Powder Technol., vol. 31, no. 4, pp. 1480–1489, 2020, doi: 10.1016/j.apt.2020.01.028.
H. Wu et al., "Comprehensive Evaluation on a Prospective Precipitation-Flotation Process for Metal-Ions Removal from Wastewater Simulants," J. Hazard. Mater., vol. 371, no. December 2018, pp. 592–602, 2019, doi: 10.1016/j.jhazmat.2019.03.048.
C. Y. Foong, M. D. H. Wirzal, and M. A. Bustam, "A Review on Nanofibers Membrane with Amino-Based Ionic Liquid for Heavy Metal Removal," J. Mol. Liq., vol. 297, p. 111793, 2020, doi: 10.1016/j.molliq.2019.111793.
R. Shrestha et al., "Technological Trends in Heavy Metals Removal from Industrial Wastewater: A Review," J. Environ. Chem. Eng., vol. 9, no. 4, p. 105688, 2021, doi: 10.1016/j.jece.2021.105688.
S. Dhiman, B. Srivastava, G. Singh, M. Khatri, and S. K. Arya, "Immobilization of Mannanase on Sodium Alginate-Grafted-β-Cyclodextrin: An Easy and Cost Effective Approach for the Improvement of Enzyme Properties," Int. J. Biol. Macromol., vol. 156, pp. 1347–1358, 2020, doi: 10.1016/j.ijbiomac.2019.11.175.
D. Herawati, S. D. Santoso, and I. Amalina, “Kondisi Optimum Adsorpsi-Fluidisasi Zat Warna Limbah Tekstil Menggunakan Adsorben Jantung Pisang,” J. SainHealth, vol. 2, no. 1, p. 1, 2018, doi: 10.51804/jsh.v2i1.169.1-7.
M. Ari and Munasir, “Nanopartikel Fe3O4@SiO2 untuk Aplikasi Penyerap Logam Cu2+ Dalam Air,” Inov. Fis. Indones., vol. 9, no. 1, pp. 5–8, 2020, doi: 10.26740/ifi.v9n1.p5-8.
Z. Hao et al., "Reverse Osmosis Membranes with Sulfonate and Phosphate Groups Having Excellent Anti- Scaling and Anti-Fouling Properties," Desalination, vol. 509, no. March, p. 115076, 2021, doi: 10.1016/j.desal.2021.115076.
C. Zamora-Ledezma et al., "Heavy Metal Water Pollution: A Fresh Look About Hazards, Novel and Conventional Remediation Methods," Environ. Technol. Innov., vol. 22, p. 101504, 2021, doi: 10.1016/j.eti.2021.101504.
S. Munawaroh and S. Widyastuti, “Penjerapan Logam Besi (Fe) Menggunakan Adsorben Cangkang Kerang Darah (Anadara Granosa Linn),” WAKTU J. Tek. UNIPA, vol. 17, no. 2, pp. 1–5, 2019, doi: 10.36456/waktu.v17i2.2131.
S. A. Qamar, M. Ashiq, M. Jahangeer, A. Riasat, and M. Bilal, "Chitosan-Based Hybrid Materials as Adsorbents for Textile Dyes–A Review," Case Stud. Chem. Environ. Eng., vol. 2, p. 100021, 2020, doi: 10.1016/j.cscee.2020.100021.
E. Susilowati, F. W. Mahatmanti, and S. Haryani, “Indonesian Journal of Chemical Science Sintesis Kitosan-Silika Bead sebagai Pengadsorpsi Ion Logam Pb ( II ) pada Limbah Cair Batik,” Indones. J. Chem. Sci., vol. 7, no. 2, pp. 1–9, 2018.
S. M. Hosseini Asl, H. Javadian, M. Khavarpour, C. Belviso, M. Taghavi, and M. Maghsudi, "Porous Adsorbents Derived from Coal Fly Ash as Cost-Effective and Environmentally-Friendly Sources of Aluminosilicate for Sequestration of Aqueous and Gaseous Pollutants: A Review," J. Clean. Prod., vol. 208, pp. 1131–1147, 2019, doi: 10.1016/j.jclepro.2018.10.186.
F. O. Ochedi, Y. Liu, and A. Hussain, "A Review on Coal Fly Ash-Based Adsorbents for Mercury and Arsenic Removal," J. Clean. Prod., vol. 267, p. 122143, 2020, doi: 10.1016/j.jclepro.2020.122143.
X. Zhou, C. Jin, G. Liu, G. Wu, S. Huo, and Z. Kong, "Functionalized Lignin-Based Magnetic Adsorbents with Tunable Structure for the Efficient and Selective Removal of Pb(II) from Aqueous Solution," Chem. Eng. J., vol. 420, no. P3, p. 130409, 2021, doi: 10.1016/j.cej.2021.130409.
J. Y. Jo, J. H. Choi, Y. F. Tsang, and K. Baek, "Pelletized Adsorbent of Alum Sludge and Bentonite for Removal of Arsenic," Environ. Pollut., vol. 277, p. 116747, 2021, doi: 10.1016/j.envpol.2021.116747.
Y. Kobayashi, F. Ogata, T. Nakamura, and N. Kawasaki, "Synthesis of Novel Zeolites Produced from fly Ash by Hydrothermal Treatment in Alkaline Solution and its Evaluation as an Adsorbent for Heavy Metal Removal," J. Environ. Chem. Eng., vol. 8, no. 2, p. 103687, 2020, doi: 10.1016/j.jece.2020.103687.
Z. Xu et al., "Manganese Ferrite Modified Biochar from Vinasse for Enhanced Adsorption of Levofloxacin: Effects and Mechanisms," Environ. Pollut., vol. 272, p. 115968, 2021, doi: 10.1016/j.envpol.2020.115968.
R. Shahrokhi-Shahraki, C. Benally, M. G. El-Din, and J. Park, "High Efficiency Removal of Heavy Metals Using Tire-Derived Activated Carbon vs Commercial Activated Carbon: Insights Into the Adsorption Mechanisms," Chemosphere, vol. 264, p. 128455, 2021, doi: 10.1016/j.chemosphere.2020.128455.
Y. Liu et al., “Adsorption Behavior of Heavy Metal Ions from Aqueous Solution Onto Composite Dextran-Chitosan Macromolecule Resin Adsorbent,” Int. J. Biol. Macromol., vol. 141, pp. 738–746, 2019, doi: 10.1016/j.ijbiomac.2019.09.044.
N. Akhlaghi and G. Najafpour-Darzi, "Manganese Ferrite (MnFe2O4) Nanoparticles: From Synthesis to Application -A Review," J. Ind. Eng. Chem., vol. 103, pp. 292–304, 2021, doi: 10.1016/j.jiec.2021.07.043.
M. R. Hassan and M. I. Aly, "Magnetically Synthesized MnFe2O4 Nanoparticles as an Effective Adsorbent for Lead Ions Removal from an Aqueous Solution," Aqua Water Infrastructure, Ecosyst. Soc., vol. 70, no. 6, pp. 901–920, 2021, doi: 10.2166/aqua.2021.132.
A. Amrollahi, M. Massinaei, and A. Z. Moghaddam, "Removal of the residual xanthate from flotation plant tailings using bentonite modified by magnetic nanoparticles," Miner. Eng., vol. 134, no. January, pp. 142–155, 2019, doi: 10.1016/j.mineng.2019.01.031.
Z. Razmara, S. Saheli, V. Eigner, and M. Dusek, "Synthesis, Crystal Structure and Magnetic Properties of a New Tri-Nuclear Iron (II, III) Complex, a Precursor for the Preparation of Superparamagnetic Fe3O4 Nanoparticles Applicable in the Removal of Cd 2+," Appl. Organomet. Chem., vol. 33, no. 5, pp. 1–13, 2019, doi: 10.1002/aoc.4880.
A. Zeraatkar Moghaddam, E. Ghiamati, A. Pourashuri, and A. Allahresani, "Modified Nickel Ferrite Nanocomposite/Functionalized Chitosan as a Novel Adsorbent for the Removal of Acidic Dyes," Int. J. Biol. Macromol., vol. 120, pp. 1714–1725, 2018, doi: 10.1016/j.ijbiomac.2018.09.198.
S. Martinez–Vargas et al., “As(III) and As(V) Adsorption on Manganese Ferrite Nanoparticles,” J. Mol. Struct., vol. 1154, no. Iii, pp. 524–534, 2018, doi: 10.1016/j.molstruc.2017.10.076.
G. Feng et al., "Magnetic Natural Composite Fe3O4-Chitosan@Bentonite for Removal of Heavy Metals from Acid Mine Drainage," J. Colloid Interface Sci., vol. 538, pp. 132–141, 2019, doi: 10.1016/j.jcis.2018.11.087.
M. Rincón Joya, J. Barba Ortega, J. O. D. Malafatti, and E. C. Paris, "Evaluation of Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles," ACS Omega, vol. 4, no. 17, pp. 17477–17486, 2019, doi: 10.1021/acsomega.9b02251.
E. A. Setiadi et al., "The Effect of Temperature on Synthesis of MgFe2O4 Based on Natural Iron Sand by Coprecipitation Method as Adsorbent Pb Ion," J. Phys. Conf. Ser., vol. 985, no. 1, 2018, doi: 10.1088/1742-6596/985/1/012046.
N. S. Asri, F. A. Nurdila, T. Kato, and E. Suharyadi, "Removal study of Cu (II), Fe (II) and Ni (II) Ions from Wastewater Using Polymer-Coated Cobalt Ferrite (CoFe2O4) Magnetic Nanoparticles Adsorbent," J. Phys. Conf. Ser. Pap., vol. 1091, no. Ii, pp. 1–8, 2018.
F. Fajaroh, I. D. Susilowati, Nazriati, Sumari, and A. Nur, "Synthesis of ZnFe2O4 Nanoparticles with PEG 6000 and Their Potential Application for Adsorbent," IOP Conf. Ser. Mater. Sci. Eng., vol. 515, no. 1, pp. 1–9, 2019, doi: 10.1088/1757-899X/515/1/012049.
N. Putri and D. Puryanti, “Sintesis Nanopartikel Manganese Ferrite (MnFe2O4) dari Pasir Besi dan Mangan Alam dengan Metode Kopresipitasi,” J. Fis. Unand, vol. 9, no. 3, pp. 375–380, 2020, [Online]. Available: https://doi.org/10.25077/jfu.9.3.375-380.2020%0AOpen
S. Gautam et al., “Superparamagnetic MnFe2O4 Dispersed Over Graphitic Carbon Sand Composite and Bentonite as Magnetically Recoverable Photocatalyst for Antibiotic Mineralization,” Sep. Purif. Technol., vol. 172, pp. 498–511, 2017, doi: 10.1016/j.seppur.2016.09.006.
M. Ghobadi, M. Gharabaghi, H. Abdollahi, Z. Boroumand, and M. Moradian, “MnFe2O4-Graphene Oxide Magnetic Nanoparticles as a High-Performance Adsorbent for Rare Earth Elements: Synthesis, Isotherms, Kinetics, Thermodynamics and Desorption,” J. Hazard. Mater., vol. 351, pp. 308–316, 2018, doi: 10.1016/j.jhazmat.2018.03.011.
M. M. Baig, M. A. Yousuf, P. O. Agboola, M. A. Khan, I. Shakir, and M. F. Warsi, "Optimization of Different Wet Chemical Routes and Phase Evolution Studies of MnFe2O4 Nanoparticles," Ceram. Int., vol. 45, no. 10, pp. 12682–12690, 2019, doi: 10.1016/j.ceramint.2019.03.114.
J. Liu et al., “Highly Efficient Removal of Thallium in Wastewater by MnFe2O4-Biochar Composite,” J. Hazard. Mater., vol. 401, pp. 1–11, 2021, doi: 10.1016/j.jhazmat.2020.123311.
W. Ahmed et al., “Utilization of Citrullus Lanatus L. Seeds to Synthesize a Novel MnFe2O4-Biochar Adsorbent for the Removal of U(VI) from Wastewater: Insights and Comparison Between Modified and Raw Biochar,” Sci. Total Environ., vol. 771, pp. 1–12, 2021, doi: 10.1016/j.scitotenv.2021.144955.
H. Qin et al., "Efficient Adsorption of Hg(II) from Aqueous Solution by N, S co-doped MnFe2O4@C Magnetic Nanoparticles," Water Sci. Technol., vol. 81, no. 6, pp. 1273–1282, 2020, doi: 10.2166/wst.2020.224.
A. Ahmadi, R. Foroutan, H. Esmaeili, and S. Tamjidi, "The Role of Bentonite Clay and Bentonite Clay@MnFe2O4 Composite and Their Physico-Chemical Properties on the Removal of Cr (III) and Cr (VI) from Aqueous Media," Env. Sci Pollut Res, vol. 27, pp. 14044–14057, 2020.
A. Hasan, M. Yerizam, and Y. M. Habib, “Mekanisme Adsorben Zeolit dan Manganese Zeolit Terhadap Logam Besi (Fe),” J. Kinet., vol. 12, no. 01, pp. 9–17, 2021, [Online]. Available: https://jurnal.polsri.ac.id/index.php/kimia/index
A. Setiawan, J. N. Hanun, and A. E. Afiuddin, “Sintesis dan Karakterisasi Zeolit dari Abu Bagasse Sebagai Adsorben Logam Berat Cu(II),” J. Presipitasi, vol. 17, no. 1, pp. 85–95, 2020.
I. Yunita, T. Sulistyaningsih, and N. Widiarti, “Karakterisasi dan Uji Sifat Fisik Material Zeolit Modifikasi Magnetit sebagai Adsorben Ion Klorida dalam Larutan Berair,” Indones. J. Chem. Sci., vol. 8, no. 2, pp. 87–92, 2019.
I. Y. Fajriani, A. Z. Syaiful, and F. Ariani, “Pemanfaatan Zeolit yang Teraktivasi Asam Klorida ( HCl ) sebagai Adsorben Logam Berat Timbal ( Pb ),” SAINTIS, vol. 3, no. April, 2022.
L. Muis, A. Sanova, and H. Suryadri, “Karakterisasi Zeolit dari Ampas Tebu yang Dihasilkan dari Reaktor Hidrotermal dan Aplikasinya pada Penyerapan Ion Logam Pb2+,” Chempublish J., vol. 6, no. 1, pp. 1–11, 2021.
Yulianis, H. Riskal, D. I. Z. Novita, and Mahidin, “Adsorpsi Ion Logam Fe3+ dalam Air Asam Tambang Menggunakan Nano Zeolit Alam,” Indones. Min. Prof. J., vol. 4, no. 1, pp. 29–38, 2022.
Mashadi, Yunasfi, and A. Mulyawan, "Microwave absorption study of manganese ferrite in x-band range prepared by solid state reaction method," J. Teknol., vol. 80, no. 2, pp. 147–151, 2018, doi: 10.11113/jt.v80.10773.
A. Almahri, "The solid-state synthetic performance of bentonite stacked manganese ferrite nanoparticles: adsorption and photo-fenton degradation of MB dye and antibacterial applications," J. Mater. Res. Technol., vol. 17, pp. 2935–2949, 2022, doi: 10.1016/j.jmrt.2022.02.052.
R. Panek, M. Medykowska, M. Wi´sniewska, K. Szewczuk-Karpisz, K. J˛edruchniewicz, and M. Franus, “Simultaneous Removal of Pb2+ and Zn 2+ Heavy Metals Using,” Materials (Basel)., vol. 14, pp. 1–17, 2021.
M. Bayat, V. Javanbakht, and J. Esmaili, "Synthesis of Zeolite/Nickel Ferrite/Sodium Alginate Bionanocomposite via a Coprecipitation Technique for Efficient Removal of Water-Soluble Methylene Blue Dye," Int. J. Biol. Macromol., vol. 116, no. 2017, pp. 607–619, 2018, doi: 10.1016/j.ijbiomac.2018.05.012.
X. Chen et al., "Facile One-Step Synthesis of Magnetic Zeolitic Imidazolate Framework for Ultra Fast Removal of Congo Red from Water," Microporous Mesoporous Mater., vol. 311, no. October 2020, p. 110712, 2021, doi: 10.1016/j.micromeso.2020.110712.
S. Roguai and A. Djelloul, "Structural, Microstructural and Photocatalytic Degradation of Methylene Blue of Zinc Oxide and Fe-doped ZnO Nanoparticles Prepared by Simple Coprecipitation Method," Solid State Commun., vol. 334–335, no. March, p. 114362, 2021, doi: 10.1016/j.ssc.2021.114362.
S. Palaka et al., "A Facile Chemical Synthesis of PrCo5 Particles with High Performance," J. Alloys Compd., vol. 812, p. 151674, 2020, doi: 10.1016/j.jallcom.2019.151674.
S. Balada et al., "Review of Characteristics and Properties of Fe2O3/SiO2 As Water Pollution Prevention," Indones. Phys. Rev., vol. 2, no. 3, pp. 1–8, 2019.
J. Chen, J. Liu, H. Deng, S. Yao, and Y. Wang, "Regulatory Synthesis and Characterization of Hydroxyapatite Nanocrystals by a Microwave-Assisted Hydrothermal Method," Ceram. Int., vol. 46, no. 2, pp. 2185–2193, 2020, doi: 10.1016/j.ceramint.2019.09.203.
P. G. Jamkhande, N. W. Ghule, A. H. Bamer, and M. G. Kalaskar, "Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications," J. Drug Deliv. Sci. Technol., vol. 53, no. July 2018, p. 101174, 2019, doi: 10.1016/j.jddst.2019.101174.
A. Xie et al., "One-Step Facile Fabrication of Sustainable Cellulose Membrane with Superhydrophobicity Via a Sol-Gel Strategy for Efficient Oil/Water Separation," Surf. Coatings Technol., vol. 361, no. January, pp. 19–26, 2019, doi: 10.1016/j.surfcoat.2019.01.040.
D. D. Andhare, S. A. Jadhav, M. V. Khedkar, S. B. Somvanshi, S. D. More, and K. M. Jadhav, "Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Coprecipitation Technique," J. Phys. Conf. Ser., vol. 1644, no. 1, 2020, doi: 10.1088/1742-6596/1644/1/012014.
L. Silvia and M. Zainuri, “Analisis Silika (SiO2) Hasil Kopresipitasi Berbasis Bahan Alam Menggunakan Uji XRF dan XRD,” J. Fis. dan Apl., vol. 16, no. 1, p. 12, 2020, doi: 10.12962/j24604682.v16i1.5322.
S. Sinha et al., "Removal of Congo Red Dye from Aqueous Solution Using Amberlite IRA-400 in Batch and Fixed Bed Reactors," Chem. Eng. Commun., vol. 205, no. 4, pp. 432–444, 2018, doi: 10.1080/00986445.2017.1399366.
M. A. M. Taguba et al., "Nonlinear Isotherm and Kinetic Modeling of Cu(II) and Pb(II) Uptake from Water by MnFe2O4/Chitosan Nanoadsorbents," water MDPI, vol. 13, no. 12, pp. 1–18, 2021.
A. Medina-Ramirez, P. Gamero-Melo, B. Ruiz-Camacho, J. I. Minchaca-Mojica, R. Romero-Toledo, and K. Y. Gamero-Vega, "Adsorption of aqueous As (III) in presence of coexisting ions by a green Fe-modified W zeolite," Water (Switzerland), vol. 11, no. 2, pp. 1–17, 2019, doi: 10.3390/w11020281.
S. A. Al-Zahrani et al., "Influence of Ce3+ on the Structural, Morphological, Magnetic, Photocatalytic and Antibacterial Properties of Spinel MnFe2O4 Nanocrystallites Prepared by the Combustion Route," Crystals, vol. 12, no. 2, 2022, doi: 10.3390/cryst12020268.
L. Gao et al., "Synthesis and Magnetism Property of Manganese Ferrite MnFe2O4 by Selective Reduction and Oxidization Roasting Process," Appl. Surf. Sci., vol. 508, no. January, p. 145292, 2020, doi: 10.1016/j.apsusc.2020.145292.
S. Kanagesan et al., "Synthesis, characterization and in vitro evaluation of manganese ferrite (MnFe2O4) nanoparticles for their biocompatibility with murine breast cancer cells (4T1)," Molecules, vol. 21, no. 3, pp. 1–9, 2016, doi: 10.3390/molecules21030312.
K. Sun et al., "Intergranular Insulating Reduced Iron Powder-Carbonyl Iron Powder/SiO2-Al2O3 Soft Magnetic Composites with High Saturation Magnetic Flux Density and Low Core Loss," J. Magn. Magn. Mater., vol. 493, no. August 2019, p. 165705, 2020, doi: 10.1016/j.jmmm.2019.165705.
M. Alaqarbeh, F. Khalili, M. Bouachrine, and A. Alwarthan, "Synthesis, Characterization and Investigation of Cross-Linked Chitosan/(MnFe2O4) Nanocomposite Adsorption Potential to Extract U(VI) and Th(IV)," Catalysts, vol. 13, no. 1, p. 47, 2022, doi: 10.3390/catal13010047.
S. D. Yudanto, L. A. R. Hakim, M. E. H. Rasyadi, A. Imaduddin, and A. W. Pramono, “Sintesis dan Karakterisasi MgB2 dengan Penambahan Nano-SiC melalui Metode Reaksi Padat,” Indones. J. Appl. Phys., vol. 12, no. 1, p. 108, 2022, doi: 10.13057/ijap.v12i1.49136.
Q. Li, X. Jiang, and Y. Lian, "The efficient photocatalytic degradation of organic pollutants on the MnFe2O4 /BGA composite under visible light," Nanomaterials, vol. 11, no. 5, 2021, doi: 10.3390/nano11051276.
W. Ji et al., "Synthesis of single-phase zeolite a by coal gasification fine slag from ningdong and its application as a high-efficiency adsorbent for cu2+ and pb2+ in simulated waste water," ChemEngineering, vol. 4, no. 4, pp. 1–13, 2020, doi: 10.3390/chemengineering4040065.
X. Li, L. Zhang, Z. Yang, P. Wang, Y. Yan, and J. Ran, “Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review,” Sep. Purif. Technol., vol. 235, p. 116213, 2020, doi: 10.1016/j.seppur.2019.116213.
M. Alaqarbeh, F. I. Khalili, and O. Kanoun, "Manganese ferrite (MnFe2O4) as potential nanosorbent for adsorption of uranium(VI) and thorium(IV)," J. Radioanal. Nucl. Chem., vol. 323, no. 1, pp. 515–537, 2020, doi: 10.1007/s10967-019-06953-4.
Y. Kobayashi, F. Ogata, C. Saenjum, T. Nakamura, and N. Kawasaki, "Removal of Pb2+ from Aqueous Solution Using K-Type Zeolite Synthesized from Coal Fly Ash," water MDPI, vol. 12, no. 9, pp. 1–12, 2019.
S. Selambakkannu, N. A. F. Othman, K. A. Bakar, S. A. Shukor, and Z. A. Karim, "A kinetic and mechanistic study of adsorptive removal of metal ions by imidazole-functionalized polymer graft banana fiber," Radiat. Phys. Chem., vol. 153, pp. 58–69, 2018, doi: 10.1016/j.radphyschem.2018.09.012.
T. Bakalár, M. Kaňuchová, A. Girová, H. Pavolová, R. Hromada, and Z. Hajduová, "Characterization of fe(Iii) adsorption onto zeolite and bentonite," Int. J. Environ. Res. Public Health, vol. 17, no. 16, pp. 1–13, 2020, doi: 10.3390/ijerph17165718.
I. V. Joseph, L. Tosheva, G. Miller, and A. M. Doyle, "Fau—type zeolite synthesis from clays and its use for the simultaneous adsorption of five divalent metals from aqueous solutions," Materials (Basel)., vol. 14, no. 13, 2021, doi: 10.3390/ma14133738.
Y. Zhang, J. Dong, F. Guo, Z. Shao, and J. Wu, "Zeolite synthesized from coal fly ash produced by a gasification process for Ni2+ removal fromwater," Minerals, vol. 8, no. 3, pp. 1–14, 2018, doi: 10.3390/min8030116.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).