EFFECT OF FE3O4/SIO2/TIO2 PHOTOCATALYST ON POLLUTANT MANAGEMENT IN SWAMP WATER
Authors
Beta Riana Liasari , Fitri Suryani Arsyad , Assaidah Assaidah , Ramlan Ramlan , Siti Nur’aini , Balada SoeryaDOI:
10.29303/ipr.v7i1.271Published:
2023-11-07Issue:
Vol. 7 No. 1 (2024)Keywords:
Fe3O4, SiO2, TiO2Articles
Downloads
How to Cite
Abstract
Water is an essential source of life, thus regulating its purity is critical in daily living. Water has a high acid content (pH) and contains a variety of harmful chemical elements such as iron (Fe), copper (Cu), sulphate (SO4), nitrate (NO3), chloride (Cl), and other dangerous bacteria. The goal of this research is to create wastewater management such that it can be used by the community. The process involves creating Fe3O4 catalysts that have been modified using SiO2 and TiO2. The application of dirty water employs Fe3O4/SiO2/TiO2 to bind contaminants in polluted water. The results of the photocatalyst process carried out by Fe3O4/SiO2/TiO2 reach 90% in 180 minutes of UV light irritation so that it can degrade water pollutants such as methylene orange.References
A. Boretti and L. Rosa, “Reassessing the projections of the World Water Development Report,” npj Clean Water, vol. 2, no. 1, 2019, doi: 10.1038/s41545-019-0039-9.
B. K. Mishra, P. Kumar, C. Saraswat, S. Chakraborty, and A. Gautam, “Water Security in a Changing Environment : Concept ,” Water, vol. 13, no. 4, p. 490, 2021.
S. Sunaryono et al., “The effect of Fe3O4concentration to photocatalytic activity of Fe3O4@TiO2-PVP core-shell nanocomposite,” J. Phys. Conf. Ser., vol. 1595, no. 1, 2020, doi: 10.1088/1742-6596/1595/1/012003.
N. Agustina, Chandra, and M. F. Aquarista, “The Quality of Water Swamp on Complaints Health Villagers,” J. Kesehat., vol. 12, no. 2, pp. 220–227, 2021.
A. Pramono, S. Sisno, and M. Sholichin, “Study of Water Management Development in Petung Swamp Areas at the Province of East Kalimantan,” Civ. Environ. Sci., vol. 004, no. 02, pp. 173–182, 2021, doi: 10.21776/ub.civense.2021.00402.7.
M. R. Ridho, D. Puspitasari, and I. W. A. Khrisnawan Firdaus, “the Effect of Peat Swamp Water on Tooth Demineralization of Copper and Selenium Ion,” Dentino J. Kedokt. Gigi, vol. 5, no. 2, p. 115, 2020, doi: 10.20527/dentino.v5i2.8947.
Masthura and E. Jumiati, “Peningkatan Kualitas Air Menggunakan Metode Quality Improvement of Water Using,” FISITEK J. Ilmu Fis. dan Teknol., vol. 1, no. 2, pp. 1–6, 2017.
A. F. Anggana and P. D. Susanti, “Evaluation of water quality in the swamp river border using water quality index,” J. Degrad. Min. L. Manag., vol. 7, no. 4, pp. 2373–2379, 2020, doi: 10.15243/jdmlm.
S. N. Aida and A. D. Utomo, “Kajian Kualitas Perairan Untuk Perikanan Di Rawa Pening Jawa Tengah,” BAWAL Widya Ris. Perikan. Tangkap, vol. 8, no. 3, p. 173, 2017, doi: 10.15578/bawal.8.3.2016.173-182.
J. Mateo-Sagasta, S. Marjani, H. Turral, and J. Burke, Water pollution from agriculture: a global review. 2017. [Online]. Available: http://www.fao.org/3/a-i7754e.pdf
S. Khalid et al., “A review of environmental contamination and health risk assessment of wastewater use for crop irrigation with a focus on low and high-income countries,” Int. J. Environ. Res. Public Health, vol. 15, no. 5, pp. 1–36, 2018, doi: 10.3390/ijerph15050895.
G. Roviello et al., “Hybrid geopolymeric foams for the removal of metallic ions from aqueous waste solutions,” Materials (Basel)., vol. 12, no. 24, p. 4091, 2019, doi: 10.3390/ma12244091.
R. Teschke, “Aluminum, Arsenic, Beryllium, Cadmium, Chromium, Cobalt, Copper, Iron, Lead, Mercury, Molybdenum, Nickel, Platinum, Thallium, Titanium, Vanadium, and Zinc: Molecular Aspects in Experimental Liver Injury,” Int. J. Mol. Sci., vol. 23, no. 20, 2022, doi: 10.3390/ijms232012213.
S. Hayet, K. M. Sujan, A. Mustari, and M. A. Miah, “Hemato-biochemical profile of turkey birds selected from Sherpur district of Bangladesh,” Int. J. Adv. Res. Biol. Sci, vol. 8, no. 6, pp. 1–5, 2021, doi: 10.22192/ijarbs.
M. Frankowski, “Simultaneous determination of inorganic and organic ions in plant parts of Betula pendula from two different types of ecosystems (Wielkopolski National Park and Chemical Plant in Luboń, Poland),” Environ. Sci. Pollut. Res., vol. 23, no. 11, pp. 11046–11057, 2016, doi: 10.1007/s11356-016-6274-4.
Y. B. Yuliyati, S. Listiani, S. Solihudin, and A. R. Noviyanti, “Isolation of Silica-Lignin Composites from Rice Husk and Their Adsorption to Cr(VI),” ALCHEMY J. Penelit. Kim., vol. 14, no. 2, p. 267, 2018, doi: 10.20961/alchemy.14.2.19818.267-276.
P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, “Molecular, clinical and environmental toxicicology Volume 3: Environmental Toxicology,” Mol. Clin. Environ. Toxicol., vol. 101, pp. 133–164, 2012, doi: 10.1007/978-3-7643-8340-4.
K. S. Shafaqat et al., “Heavy Metals Contamination and what are the Impacts on Living Organisms,” Greener J. Environ. Manag. Public Saf., vol. 2, no. 4, pp. 2354–2276, 2013, [Online]. Available: www.gjournals.org
S. Mitra et al., “Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity,” J. King Saud Univ. - Sci., vol. 34, no. 3, p. 101865, 2022, doi: 10.1016/j.jksus.2022.101865.
M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, and K. N. Beeregowda, “Toxicity, mechanism and health effects of some heavy metals,” Interdiscip. Toxicol., vol. 7, no. 2, pp. 60–72, 2014, doi: 10.2478/intox-2014-0009.
R. Erdoo Kukwa, D. Tyoker Kukwa, A. David Oklo, T. Thaddeus Ligom, B. Ishwah, and J. Ajegi Omenka, “Adsorption Studies of Silica Adsorbent Using Rice Husk as a Base Material for Metal Ions Removal from Aqueous Solution,” Am. J. Chem. Eng., vol. 8, no. 2, p. 48, 2020, doi: 10.11648/j.ajche.20200802.12.
P. Wang et al., “Silica coated Fe3O4 magnetic nanospheres for high removal of organic pollutants from wastewater,” Chem. Eng. J., vol. 306, pp. 280–288, 2016, doi: 10.1016/j.cej.2016.07.068.
V. K. Gupta, I. Ali, T. A. Saleh, A. Nayak, and S. Agarwal, “Chemical treatment technologies for waste-water recycling - An overview,” RSC Adv., vol. 2, no. 16, pp. 6380–6388, 2012, doi: 10.1039/c2ra20340e.
W. J. Cosgrove and D. P. Loucks, “Water management: Current and future challenges and research directions,” Water Resour. Res., vol. 51, no. 6, pp. 4823–4839, 2015, doi: 10.1002/2014WR016869.Received.
A. K. Mishra, Smart Materials For Waste Water Applications, vol. 4. 2016.
G. Ren et al., “Recent advances of photocatalytic application in water treatment: A review,” Nanomaterials, vol. 11, no. 7, 2021, doi: 10.3390/nano11071804.
S. S. Mohtar et al., “Impact of doping and additive applications on photocatalyst textural properties in removing organic pollutants: A review,” Catalysts, vol. 11, no. 10, pp. 1–30, 2021, doi: 10.3390/catal11101160.
M. Sakar, R. Mithun Prakash, and D. Trong-On, “Insights into the tio2-based photocatalytic systems and their mechanisms,” Catalysts, vol. 9, no. 8, 2019, doi: 10.3390/catal9080680.
M. Ge et al., “A review of one-dimensional TiO2 nanostructured materials for environmental and energy applications,” J. Mater. Chem. A, vol. 4, no. 18, pp. 6772–6801, 2016, doi: 10.1039/c5ta09323f.
B. Liu, B. Chen, and B. Zhang, “Oily wastewater treatment by nano-TiO2-induced photocatalysis,” IEEE Nanotechnol. Mag., no. July, pp. 2–13, 2017.
Z. Li, X. Meng, and Z. Zhang, “Fewer-layer BN nanosheets-deposited on Bi 2 MoO 6 microspheres with enhanced visible light-driven photocatalytic activity,” Appl. Surf. Sci., vol. 483, no. March, pp. 572–580, 2019, doi: 10.1016/j.apsusc.2019.03.245.
Q. Lin et al., “Self-cleaning photocatalytic MXene composite membrane for synergistically enhanced water treatment: Oil/water separation and dyes removal,” Chem. Eng. J., vol. 427, no. July 2021, p. 131668, 2022, doi: 10.1016/j.cej.2021.131668.
R. Yang et al., “One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water,” Chem. Eng. J., vol. 390, no. February, p. 124522, 2020, doi: 10.1016/j.cej.2020.124522.
Y. Tang, G. Zhang, C. Liu, S. Luo, and X. Xu, “Magnetic TiO2-graphene composite as a high-performance and recyclable platform for efficient photocatalytic removal of herbicides from water,” J. Hazard. Mater., vol. 252–253, pp. 115–122, 2013, doi: 10.1016/j.jhazmat.2013.02.053.
Z. Zhang et al., “Synthesis of ag loaded ZnO/BiOCl with high photocatalytic performance for the removal of antibiotic pollutants,” Crystals, vol. 11, no. 8, pp. 1–12, 2021, doi: 10.3390/cryst11080981.
J. Liu et al., “Highly efficient photocatalytic degradation of oil pollutants by oxygen deficient SnO2 quantum dots for water remediation,” Chem. Eng. J., vol. 404, 2021, doi: 10.1016/j.cej.2020.127146.
Q. Zhou et al., “Novel hierarchical carbon quantum dots-decorated BiOCl nanosheet/carbonized eggshell membrane composites for improved removal of organic contaminants from water via synergistic adsorption and photocatalysis,” Chem. Eng. J., vol. 420, no. P1, p. 129582, 2021, doi: 10.1016/j.cej.2021.129582.
S. Wu, X. Yu, J. Zhang, Y. Zhang, Y. Zhu, and M. Zhu, “Construction of BiOCl/CuBi2O4 S-scheme heterojunction with oxygen vacancy for enhanced photocatalytic diclofenac degradation and nitric oxide removal,” Chem. Eng. J., vol. 411, no. November 2020, p. 128555, 2021, doi: 10.1016/j.cej.2021.128555.
M. P. Ravikumar, S. Bharathkumar, B. Urupalli, M. K. Murikinati, S. M. Venkatakrishnan, and S. Mohan, “Insights into the Photocatalytic Memory Effect of Magneto- Plasmonic Ag−Fe3O4@TiO2 Ternary Nanocomposites for Dye degradation and H2 Production under light and dark Conditions,” Energy and Fuels, vol. 36, no. 19, pp. 11503–11514, 2022, doi: 10.1021/acs.energyfuels.2c01563.
G. Shilpa, P. M. Kumar, P. R. Deepthi, A. Sukhdev, P. Bhaskar, and D. K. Kumar, “Improved Photocatalytic Performance of Fe3O4/TiO2 Thin Film in the Degradation of MB Dye Under Sunlight Radiation,” Brazilian J. Phys., vol. 53, no. 2, pp. 1–8, 2023, doi: 10.1007/s13538-022-01243-z.
A. Babyszko, A. Wanag, M. Sadłowski, E. Kusiak-Nejman, and A. W. Morawski, “Synthesis and Characterization of SiO2/TiO2 as Photocatalyst on Methylene Blue Degradation,” Catalysts, vol. 12, no. 11, 2022, doi: 10.3390/catal12111372.
S. M. Gupta and M. Tripathi, “A review of TiO2 nanoparticles,” Chinese Sci. Bull., vol. 56, no. 16, pp. 1639–1657, 2011, doi: 10.1007/s11434-011-4476-1.
B. Minhas, S. Dino, Y. Zuo, H. Qian, and X. Zhao, “Improvement of corrosion resistance of tio2 layers in strong acidic solutions by anodizing and thermal oxidation treatment,” Materials (Basel)., vol. 14, no. 5, pp. 1–13, 2021, doi: 10.3390/ma14051188.
R. Das, V. Ambardekar, and P. P. Bandyopadhyay, “Titanium Dioxide and Its Applications in Mechanical, Electrical, Optical, and Biomedical Fields,” Intech, vol. 11, no. tourism, p. 13, 2016, [Online]. Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
M. Ibrahim, J. B. Agboola, S. A. Abdulkareem, O. Adedipe, and J. O. Tijani, “Effects of elevated temperature on the corrosion resistance of silver–cobalt oxide–titanium dioxide (Ag/Co3O4/TiO2) nanocomposites coating on AISI 1020,” Sci. Rep., vol. 11, no. 1, pp. 1–14, 2021, doi: 10.1038/s41598-021-90272-w.
M. Ge, Z. Hu, J. Wei, Q. He, and Z. He, “Recent advances in persulfate-assisted TiO2-based photocatalysis for wastewater treatment: Performances, mechanism and perspectives,” J. Alloys Compd., vol. 888, p. 161625, 2021, doi: 10.1016/j.jallcom.2021.161625.
C. B. Anucha, I. Altin, E. Bacaksiz, and V. N. Stathopoulos, “Titanium dioxide (TiO₂)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies,” Chem. Eng. J. Adv., vol. 10, no. September 2021, p. 100262, 2022, doi: 10.1016/j.ceja.2022.100262.
S. Sagadevan et al., “Photocatalytic Efficiency of Titanium Dioxide for Dyes and Heavy Metals Removal from Wastewater,” Bull. Chem. React. Eng. Catal., vol. 17, no. 2, pp. 430–450, 2022, doi: 10.9767/BCREC.17.2.13948.430-450.
Y. Zhang et al., “Titanate and titania nanostructured materials for environmental and energy applications: A review,” RSC Adv., vol. 5, no. 97, pp. 79479–79510, 2015, doi: 10.1039/c5ra11298b.
M. Pelaez et al., “A review on the visible light active titanium dioxide photocatalysts for environmental applications,” Appl. Catal. B Environ., vol. 125, pp. 331–349, 2012, doi: 10.1016/j.apcatb.2012.05.036.
C. H. Lin and W. H. Chen, “Graphene family nanomaterials (Gfn)-tio2 for the photocatalytic removal of water and air pollutants: Synthesis, characterization, and applications,” Nanomaterials, vol. 11, no. 12, 2021, doi: 10.3390/nano11123195.
N. Rahimi, R. A. Pax, and E. M. A. Gray, “Review of functional titanium oxides. I: TiO2 and its modifications,” Prog. Solid State Chem., vol. 44, no. 3, pp. 86–105, 2016, doi: 10.1016/j.progsolidstchem.2016.07.002.
A. J. Haider, Z. N. Jameel, and I. H. M. Al-Hussaini, “Review on: Titanium dioxide applications,” Energy Procedia, vol. 157, pp. 17–29, 2019, doi: 10.1016/j.egypro.2018.11.159.
H. N. C. Dharma et al., “A Review of Titanium Dioxide (TiO2)-Based Photocatalyst for Oilfield-Produced Water Treatment,” Membranes (Basel)., vol. 12, no. 3, 2022, doi: 10.3390/membranes12030345.
R. Ceccato, “Sol-Gel Synthesis of TiO 2 Nanocrystalline Particles with Enhanced Surface Area through the Reverse Micelle Approach,” vol. 2019, 2019.
G. S. Falk and M. Borlaf, “Microwave-assisted synthesis of TiO 2 nanoparticles : photocatalytic activity of powders and thin films,” 2018.
T. Aguilar, I. Carrillo-berdugo, G. Roberto, J. Jes, C. Fern, and J. Navas, “A Solvothermal Synthesis of TiO 2 Nanoparticles in a Non-Polar Medium to Prepare Highly Stable Nanofluids with Improved Thermal Properties,” 2018, doi: 10.3390/nano8100816.
T. Tatarchuk, N. Danyliuk, A. Shyichuk, W. Macyk, and M. Naushad, “Photocatalytic degradation of dyes using rutile TiO 2 synthesized by reverse micelle and low temperature methods : real-time monitoring of the degradation kinetics,” J. Mol. Liq., vol. 342, p. 117407, 2021, doi: 10.1016/j.molliq.2021.117407.
E. Ambrosio et al., “Optimization of photocatalytic degradation of biodiesel using TiO2/H2O2 by experimental design,” Sci. Total Environ., vol. 581–582, pp. 1–9, 2017, doi: 10.1016/j.scitotenv.2016.11.177.
H. Gobara, R. El-Salamony, D. Mohamed, M. Mishrif, Y. Moustafa, and T. Gendy, “Use of SiO 2 - TiO 2 Nanocomposite as Photocatalyst for the Removal of Trichlorophenol : A Kinetic Study and Numerical Evaluation,” Chem. Mater. Res., vol. 6, no. 6, pp. 63–82, 2014.
W. Udaibah and A. Priyanto, “Synthesis and Structure Characterization of SiO2 from Petung Bamboo Leaf Ash (Dendrocalamus asper (Schult.f.) Backer ex Heyne),” J. Nat. Sci. Math. Res., vol. 3, no. 1, pp. 215–220, 2017, doi: 10.21580/jnsmr.2017.3.1.1697.
F. A. Chaves and D. Jiménez, “Effects and mechanism of SiO2 on photocatalysis and super hydrophilicity of TiO2 films prepared by sol-gel method,” Nanotechnology, vol. 29, no. 27, 2018.
I. M. Joni, L. Nulhakim, M. Vanitha, and C. Panatarani, “Characteristics of crystalline silica (SiO2) particles prepared by simple solution method using sodium silicate (Na2SiO3) precursor,” J. Phys. Conf. Ser., vol. 1080, no. 1, 2018, doi: 10.1088/1742-6596/1080/1/012006.
L. S. Ganapathe, M. A. Mohamed, R. M. Yunus, and D. D. Berhanuddin, “Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation,” Magnetochemistry, vol. 6, no. 4, pp. 1–35, 2020, doi: 10.3390/magnetochemistry6040068.
S. N. Sun, C. Wei, Z. Z. Zhu, Y. L. Hou, S. S. Venkatraman, and Z. C. Xu, “Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications,” Chinese Phys. B, vol. 23, no. 3, pp. 1–19, 2014, doi: 10.1088/1674-1056/23/3/037503.
R. Al-anbari, A. H. Al-Obaidy, and E. Abd, “Photocatalytic activity of Fe3O4 under solar radiation,” Mesopotamia Environ. J., vol. 2, no. 14, pp. 41–53, 2016, doi: 10.1063/1.4914057.
H. Wu and S. Wang, “Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process,” J. Hazard. Mater., vol. 243, pp. 86–94, 2012, doi: 10.1016/j.jhazmat.2012.10.030.
P. Mishra, S. Patnaik, and K. Parida, “An overview of recent progress on noble metal modified magnetic Fe 3 O 4 for photocatalytic pollutant degradation and H 2 evolution,” Catal. Sci. Technol., vol. 9, no. 4, pp. 916–941, 2019, doi: 10.1039/c8cy02462f.
P. Ma et al., “Synthesis and photocatalytic property of Fe3O4@TiO2 core/shell nanoparticles supported by reduced graphene oxide sheets,” J. Alloys Compd., vol. 578, pp. 501–506, 2013, doi: 10.1016/j.jallcom.2013.07.026.
A. Nezhadali, M. R. Shapouri, and M. Amoli-Diva, “Laser and Solar Light-Induced Degradation of Pollutant Dyes Using Bi-Plasmonic Ag-Au Nanoparticles-Decorated Magnetic TiO2 for Textile Wastewater Treatment,” J. Nanostructures, vol. 12, no. 1, pp. 45–61, 2022, doi: 10.22052/JNS.2022.01.006.
L. Gnanasekaran et al., “Nanosized Fe3O4 incorporated on a TiO2 surface for the enhanced photocatalytic degradation of organic pollutants,” J. Mol. Liq., vol. 287, 2019, doi: 10.1016/j.molliq.2019.110967.
M. A. Zazouli, F. Ghanbari, M. Yousefi, and S. Madihi-Bidgoli, “Photocatalytic degradation of food dye by Fe3O4-TiO2 nanoparticles in presence of peroxymonosulfate: The effect of UV sources,” J. Environ. Chem. Eng., vol. 5, no. 3, pp. 2459–2468, 2017, doi: 10.1016/j.jece.2017.04.037.
M. Ahmadi, F. Ghanbari, and M. Moradi, “Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: Effect of ph on sulfate and hydroxyl radicals,” Water Sci. Technol., vol. 72, no. 11, pp. 2095–2102, 2015, doi: 10.2166/wst.2015.437.
Y. Li, M. Zhang, M. Guo, and X. Wang, “Preparation and properties of a nano TiO2/Fe3O 4 composite superparamagnetic photocatalyst,” Rare Met., vol. 28, no. 5, pp. 423–427, 2009, doi: 10.1007/s12598-009-0082-7.
D. Beydoun, R. Amal, G. K.-C. Low, and S. McEvoy, “Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution Donia,” Phys. Chem., vol. 104, pp. 4387–4396, 2000.
M. Ahmadi et al., “Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite,” J. Environ. Manage., vol. 186, no. 2016, pp. 55–63, 2017, doi: 10.1016/j.jenvman.2016.09.088.
B. Mercyrani, R. Hernandez-Maya, M. Solís-López, C. Th-Th, and S. Velumani, “Photocatalytic degradation of Orange G using TiO2/Fe3O4 nanocomposites,” J. Mater. Sci. Mater. Electron., vol. 29, no. 18, pp. 15436–15444, 2018, doi: 10.1007/s10854-018-9069-1.
M. Amoli-Diva, A. Anvari, and R. Sadighi-Bonabi, “Synthesis of magneto-plasmonic Au-Ag NPs-decorated TiO2-modified Fe3O4 nanocomposite with enhanced laser/solar-driven photocatalytic activity for degradation of dye pollutant in textile wastewater,” Ceram. Int., vol. 45, no. 14, pp. 17837–17846, 2019, doi: 10.1016/j.ceramint.2019.05.355.
S. Bibi et al., “Photocatalytic degradation of malachite green and methylene blue over reduced graphene oxide (rGO) based metal oxides (rGO-Fe3O4/TiO2) nanocomposite under UV-visible light irradiation,” J. Environ. Chem. Eng., vol. 9, no. 4, 2021, doi: 10.1016/j.jece.2021.105580.
B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, and R. Norozi, “Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles,” J. Mol. Liq., vol. 264, no. 2017, pp. 571–578, 2018, doi: 10.1016/j.molliq.2018.05.102.
S. Teixeira et al., “Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles,” J. Photochem. Photobiol. A Chem., vol. 345, pp. 27–35, 2017, doi: 10.1016/j.jphotochem.2017.05.024.
P. K. Boruah and M. R. Das, “Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium,” J. Hazard. Mater., vol. 385, p. 121516, 2020, doi: 10.1016/j.jhazmat.2019.121516.
J. Chang, Q. Zhang, Y. Liu, Y. Shi, and Z. Qin, “Preparation of Fe3O4/TiO2 magnetic photocatalyst for photocatalytic degradation of phenol,” J. Mater. Sci. Mater. Electron., vol. 29, no. 10, pp. 8258–8266, 2018, doi: 10.1007/s10854-018-8832-7.
L. Sun et al., “Study on Photocatalytic Degradation of Acid Red 73 by Fe3O4@TiO2 Exposed (001) Facets,” Appl. Sci., vol. 12, no. 3574, pp. 1–11, 2022, [Online]. Available: https://www.mdpi.com/2076-3417/12/7/3574
O. Pagar, H. Nagare, Y. Chine, R. Autade, P. Narode, and V. Sanklecha, “Mesoporous Silica: A Review,” Int. J. Pharm. Drug Anal., vol. 6, no. 1, pp. 1–12, 2018.
A. Hutem and C. Yuenyao, “Characteristics of MSNs synthesized by structure directing method,” J. Phys. Conf. Ser., vol. 2431, no. 1, 2023, doi: 10.1088/1742-6596/2431/1/012046.
N. I. M. Razip, K. M. Lee, C. W. Lai, and B. H. Ong, “Recoverability of Fe3O4/TiO2 nanocatalyst in methyl orange degradation,” Mater. Today Proc., vol. 27, no. xxxx, pp. 0–31, 2019, [Online]. Available: https://doi.org/10.1016/j.jare.2020.01.010%0Ahttps://doi.org/10.1016/j.nano.2021.102426%0Ahttps://doi.org/10.1080/03008207.2019.1617280%0Ahttp://dx.doi.org/10.1038/s41598-019-38972-2%0Ahttps://doi.org/10.1016/j.matpr.2019.12.188%0Ahttps://doi.org/10.1016/
A. K. Guin, S. K. Nayak, T. K. Rout, N. Bandyopadhyay, and D. K. Sengupta, “Corrosion behavior of nanohybrid titania-silica composite coating on phosphated steel sheet,” J. Coatings Technol. Res., vol. 9, no. 1, pp. 97–106, 2012, doi: 10.1007/s11998-011-9321-6.
B. Llano, M. C. Hidalgo, L. A. Rios, and J. A. Navío, “Effect of the type of acid used in the synthesis of titania-silica mixed oxides on their photocatalytic properties,” Appl. Catal. B Environ., vol. 150–151, pp. 389–395, 2014, doi: 10.1016/j.apcatb.2013.12.039.
X. M. Yan, P. Mei, L. Xiong, L. Gao, Q. Yang, and L. Gong, “Mesoporous titania-silica-polyoxometalate nanocomposite materials for catalytic oxidation desulfurization of fuel oil,” Catal. Sci. Technol., vol. 3, no. 8, pp. 1985–1992, 2013, doi: 10.1039/c3cy20732c.
M. B. Gawande, R. K. Pandey, and R. V. Jayaram, “Role of mixed metal oxides in catalysis science - Versatile applications in organic synthesis,” Catal. Sci. Technol., vol. 2, no. 6, pp. 1113–1125, 2012, doi: 10.1039/c2cy00490a.
X. Yu, S. Liu, and J. Yu, “Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties,” Appl. Catal. B Environ., vol. 104, no. 1–2, pp. 12–20, 2011, doi: 10.1016/j.apcatb.2011.03.008.
N. Abbas, G. N. Shao, S. M. Imran, M. S. Haider, and H. T. Kim, “Inexpensive synthesis of a high-performance Fe3O4-SiO2-TiO2 photocatalyst: Magnetic recovery and reuse,” Front. Chem. Sci. Eng., vol. 10, no. 3, pp. 405–416, 2016, doi: 10.1007/s11705-016-1579-x.
M. Abbas, B. Parvatheeswara Rao, V. Reddy, and C. Kim, “Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation,” Ceram. Int., vol. 40, no. 7, pp. 11177–11186, 2014, doi: 10.1016/j.ceramint.2014.03.148.
W. Wu, X. Xiao, S. Zhang, F. Ren, and C. Jiang, “Facile method to synthesize magnetic iron oxides/TiO 2 hybrid nanoparticles and their photodegradation application of methylene blue,” Nanoscale Res. Lett., vol. 6, pp. 1–15, 2011, doi: 10.1186/1556-276X-6-533.
C. Xue et al., “High photocatalytic activity of Fe3O4-SiO 2-TiO2 functional particles with core-shell structure,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/762423.
S. Wardiyati, W. A. Adi, and D. S. Winatapura, “Pengaruh Penambahan SiO2 Terhadap Karakteristik dan Kinerja Fotokatalitik Fe3o4/Tio2 pada Degradasi Methylene Blue,” J. Kim. dan Kemasan, vol. 38, no. 1, p. 31, 2016, doi: 10.24817/jkk.v38i1.1976.
Sau, T K. Rogach, A L. (Eds.). 2012. Complex-shaped Metal Nanoparticles: Bottom-Up Syntheses and Application, Wiley-VCH Verlag & Co KgaA. Weinheim: Germany.
Zhu, Ke-Rong. Zhang, Ming-Sheng. Hong, Jian-Ming. Yin, Zhen. 2005. “Size Effect on Phase Transition Sequence of TiO2 Nanocrystal”. Materials Science and Engineering A 403 (2005) pp. 87–93.
Ningtyas, Sri Astutik. 2010. “Sintesis Partikel Nano ZnCo2O2 denganMetode Kopresipitasi dan Karakterisasi Struktur magneto Dielektrisitasnya”. Perpustakaan Digital, Universitas Negeri Malang (http://library.um.ac.id).
S. K. W. Ningsih, 2016, Sintesis Anorganik, Universitas Negeri Padang.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).