THE POTENTIAL OF FALOAK BARK (STERCULIA QUADRIFIDA R.BR.) as an ACTIVATED CARBON PRODUCT THROUGH PHYSICAL-CHEMICAL ACTIVATION METHOD
Authors
Fetronela Rambu Bobu , Marselina Theresia Djue Tea , Pujianti Bejahida DonuataDOI:
10.29303/ipr.v8i2.448Published:
2025-05-08Issue:
Vol. 8 No. 2 (2025)Keywords:
Activated Carbon, Faloak, Ash Content, water content, FTIRArticles
Downloads
How to Cite
Abstract
Faloak is a plant species native to the East Nusa Tenggara region and Australia, widely used by the local community in NTT as an herbal medicine, particularly in treating liver disease, digestive disorders, and fatigue. However, this study presents a new application by analyzing its physical-chemical properties and evaluating its effectiveness in the synthesis of activated carbon. This study aims to explore and analyze the potential of Faloak bark as a source of activated carbon, which has not been examined in previous research. This research uses a quantitative approach by conducting controlled laboratory experiments to measure and analyze the variation in activator concentration on the water and ash content of activated carbon. The research applied the physical-chemical activation method. The physical activation process involved heating at temperatures ranging from 250°C to 450°C, while chemical activation was conducted using ZnCl₂ and NaOH at concentrations of 1 N, 2 N, and 3 N. This method was selected to determine the optimal conditions for converting Faloak bark into activated carbon, focusing on temperature and chemical activators. The findings indicate that the optimum temperature for activated carbon formation is 300°C. Additionally, tests using chemical activators showed that Faloak bark performs best with a 2 N NaOH solution, as evidenced by ash and water contents of 0.03% and 0.65%, respectively. Functional group analysis through FTIR testing identified the presence of (hydroxyl), aromatic C=C, and carbonyl C=O groups, further supporting the potential of Faloak bark as a viable material for activated carbon production. The findings suggest that Faloak bark has significant potential to be developed into an activated carbon product.References
Siswadi, H. Rianawati, A. Umroni, and M. Hidayatullah, “Karakteristik Pertumbuhan Tanaman Faloak (Sterculia quadrifida R.Br.) Asal Populasi Pulau Rote,” J. Penelit. Kehutan. Faloak, vol. 4, no. 2, pp. 81–94, Oct. 2020.
F. R. Bobu, C. S. Widodo, and J. A. E. Noor, “Efek Ekstrak Sterculia quadrifida R. Br Terhadap Potensial Membran Sel Telur Oreochromis niloticus Akibat Pencemaran Pb,” Nat. B, vol. 3, no. 4, pp. 292–297, 2016.
A. M. Dewajanthi, F. C. V. Santosa, F. Rumiati, and H. Winata, “Efektivitas Antioksidan Tanaman Faloak (Sterculia quadrifida),” J. MedScientiae, pp. 82–90, Dec. 2022.
F. R. Bobu, “Respon Potensial Membran Sel Telur Ikan Nila (Oreochromis Niloticus) Akibat Terkontaminasi Timbal (Pb),” EduFisika J. Pendidik. Fis., vol. 7, no. 1, pp. 47–54, 2022.
L. A. Setiapraja, M. R. Sururi, and V. Rachmawati, “Potensi Limbah Biomassa Menjadi Karbon Aktif Sebagai Upaya Resources Recovery : Studi Literatur,” Serambi Eng., vol. IX, no. 1, 2024.
H. Siruru, W. Syafii, N. J. Wistara, and G. Pari, “Sifat-Sifat Arang Aktif Kulit Batang Sagu Hasil Karbonisasi Hidrotermal,” J. Ilmu dan Teknol. Kayu Trop., vol. 18, no. 1, pp. 43–56, 2021.
A. S. D. Saptati, N. Hidayati, S. Kurniawan, N. W. Restu, and B. Ismuyanto, “Potensi Ampas Tebu Sebagai Alternatif Bahan Baku Pembuatan Karbon Aktif,” vol. 3, no. 4, 2016.
D. P. F. Fajri and A. Takwanto, “Proses Aktivasi Arang Dari Tempurung Kelapa Menggunakan Aktivasi Fisika Dengan Microwave Dan Variasi Waktu,” DISTILAT J. Teknol. Separasi, vol. 10, no. 2, pp. 476–484, 2024.
F. Aryani, “Aplikasi Metode Aktivasi Fisika dan Aktivasi Kimia pada Pembuatan Arang Aktif dari Tempurung Kelapa (Cocos nucifera L),” Indones. J. Lab., vol. 1, no. 2, p. 16, 2019.
A. Dwika Hardi, R. Joni, H. Aziz, L. Kimia Fisika, J. Kimia, and H. Artikel, “Pembuatan Karbon Aktif dari Tandan Kosong Kelapa Sawit sebagai Elektroda Superkapasitor,” J. Fis. Unand, vol. 9, no. 4, pp. 479–486, 2020.
Zairinayati and K. Khomsatun, “Efektifitas Tandan Kosong Kelapa Sawit Dalam Menurunkan Tingkat Chemical Oxygen Demand (Cod) Limbah Cair Jumputan,”, J. Indobiosains, vol. 4, no. 2, 2022.
Y. Meisrilestari, R. Khomaini, and H. Wijayanti, “Pembuatan Arang Aktif Dari Cangkang Kelapa Sawit Dengan Aktivasi Secara Fisika, Kimia Dan Fisika-Kimia,” Konversi, vol. 2, no. 1, p. 45, Apr. 2013.
A. Mimin, K. T. Leto, and S. Sunarwin, “Penggunaan Serbuk Gergaji Kayu Sebagai Adsorben Pada Limbah Cair Tenun Ikat,” J. Mat. dan Ilmu Pengelatuan Alam, vol. 1, no. 4, pp. 314–326, 2023.
E. Sahara, S. Gayatri, and P. Suarya, “Adsorpsi Zat Warna Rhodamin-B Dalam Larutan Oleh Arang Aktif Batang Tanaman Gumitir Teraktivasi Asam Fosfat,” Indonesian E-Journal of Applied Chemistry, [S.l.], vol. 6, no. 1, p. 37 - 45, july 2018. ISSN 2302-7274.
P. Febriyanto, J. Jerry, A. W. Satria, and H. Devianto, “Pembuatan Dan Karakterisasi Karbon Aktif Berbahan Baku Limbah Kulit Durian Sebagai Elektroda Superkapasitor,” J. Integr. Proses, vol. 8, no. 1, p. 19, 2019.
A. A. G. Suyoga Wiguna, I. B. P. Mardana, and P. Artawan, “Synthesis and Characterization of Activated Carbon Prepared From Rice Husk By Physics-Chemical Activation,” Indones. Phys. Rev., vol. 7, no. 2, pp. 281–290, 2024.
M. Rosi, M. N. Z. Fatmizal, D. H. Siburian, and A. Ismardi, “Activated Carbon Prepared From Coconut Shell Powder With Low Activation Time As Supercapacitor Electrodes,” Indones. Phys. Rev., vol. 6, no. 1, pp. 85–94, 2023.
J. E. E. Sinaga, G. Budianto, V. L. Pritama, and Suhendra, “Physicochemical Properties Analysis of Local Ceramics with Activated Carbon Additive Based on Rubber Fruit Shells as Thermal Insulators,” Indonesian. Physical. Review., vol. 6, no. 1, pp. 114–123, 2023.
H. Siruru et al., “Sifat-Sifat Arang Aktif Kulit Batang Sagu Hasil Karbonisasi Hidrotermal (The Properties of Hydrothermal Sago Bark Activated Charcoal),” J. Ilmu Teknol. Kayu Tropis Vol. 18 No. 1 Januari, 2020.
A. Priambudi and A. Susanti, “Proses Pembuatan Karbon Aktif Dari Serbuk Gergaji Kayu Dari Daerah Malang, Menggunakan Aktivator Naoh,” DISTILAT J. Teknol. Separasi, vol. 10, no. 1, pp. 256–265, 2024.
J. Sulistyo, P. Darmadji, and S. N. Marsoem, “Characteristics of Carbon from Oil Palm Shell Activated by Low Concentration of Zinc Chloride Activator,” Wood Res. J., vol. 5, no. 1, pp. 29–36, 2022.
M. Puspitasari, W. W. Nandari, and S. W. Santi R., “Effect of Sodium Hydroxide Concentration on Production of Activated Carbon from Cassava Peel,” RSF Conf. Ser. Eng. Technol., vol. 1, no. 1, pp. 527–534, 2021.
Yuliusman, Nasruddin, M. K. Afdhol, R. A. Amiliana, and A. Hanafi, “Preparation of Activated Carbon from Palm Shells Using KOH and ZnCl2 as the Activating Agent,” IOP Conf. Ser. Earth Environ. Sci., vol. 75, no. 1, 2017.
P. A. S. David, Luciana, and M. P. U. Susanto, “Characterization of Activated Carbon from Fabric Waste Activated by NaOH and NaCl,” vol. 06, no. 02, pp. 343–352, 2024.
L. Efiyanti, S. A. Wati, M. Maslahat, and J. I. Kehutanan, “Pembuatan dan Analisis Karbon Aktif dari Cangkang Buah Karet dengan Proses Kimia dan Fisika Manufacture and Analysis of Activated Carbon from Rubber Fruit Shell with Chemical and Physical Processing,” J. Ilmu Kehutan., vol. 14, pp. 94–108, 2020, [Online]. Available: https://jurnal.ugm.ac.id/jikfkt
M. A. Ahmad, N. A. Ahmad Puad, and O. S. Bello, “Kinetic, equilibrium and thermodynamic studies of synthetic dye removal using pomegranate peel activated carbon prepared by microwave-induced KOH activation,” Water Resour. Ind., vol. 6, pp. 18–35, 2014.
S. Rattanapan, J. Srikram, and P. Kongsune, “Adsorption of Methyl Orange on Coffee grounds Activated Carbon,” Energy Procedia, vol. 138, pp. 949–954, 2017.
C. Saka, “BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2,” J. Anal. Appl. Pyrolysis, vol. 95, no. May 2012, pp. 21–24, 2012.
Y. Alhamed, “Activated Carbon from Dates’ Stone by ZnCl2 Activation,” J. King Abdulaziz Univ. Sci., vol. 17, no. 2, pp. 75–98, 2006, doi: 10.4197/eng.17-2.4.
M. J. Saad, C. C. Hua, S. Misran, S. Zakaria, M. S. Sajab, and M. H. Abdul Rahman, “Rice husk activated carbon with naoh activation: Physical and chemical properties,” Sains Malaysiana, vol. 49, no. 9, pp. 2261–2267, 2020.
C. Purnawan et al., “The influence of ZnCl2 activation on macronutrient NPK adsorption simultaneously using coconut shell biochar for soil fertility improvement,” Molekul, vol. 16, no. 1, pp. 75–81, 2021.
S. Basu, G. Ghosh, and S. Saha, “Adsorption characteristics of phosphoric acid induced activation of bio-carbon: Equilibrium, kinetics, thermodynamics and batch adsorber design,” Process Saf. Environ. Prot., vol. 117, pp. 125–142, 2018.
L. Marisa, A. Mukarramah, and A. I. Fatya, “Pengaruh Variasi Aktivator ZnCl2 dan NaOH terhadap Efisiensi Adsorpsi Karbon Aktif dari Kayu Cempedak (Artocarpus Champeden) sebagai Adsorben dalam Limbah Sasirangan,” Al Kawnu Sci. Local Wisdom J., vol. 3, no. 2, pp. 26–35, 2024.
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).