FABRIKASI OF Fe3O4/ZnO NANOCOMPOSITE BY ULTRASONICATION METHOD AND ITS APPLICATION FOR ANTIBACTERIAL
Authors
Anggraini Dwi Oktavia , Lydia RohmawatiDOI:
10.29303/ipr.v5i3.175Published:
2022-08-23Issue:
Vol. 5 No. 3 (2022)Keywords:
bacteria, antibakteria, Fe3O4/ZnO Nanokomposit, ultrasonication methodArticles
Downloads
How to Cite
Abstract
The spread of diseases caused by bacteria seriously threatens human health. Alternative materials with antibacterial effects are needed to overcome this problem, such as Fe3O4/ZnO. This study aims to determine the activity of the antibacterial inhibition zone on Fe3O4/ZnO nanocomposites. The Fe3O4/ZnO nanocomposite fabrication used the ultrasonication wave method. Characterization was performed using X-ray diffraction (XRD), Fourier Transforms Infrared (FTIR), and antibacterial activity tests. The results of the XRD analysis showed that the average crystal size was about 42 nm for Fe3O4, 36 nm for ZnO, and 39 nm for Fe3O4/ZnO. The FTIR results on the nanocomposite showed the characteristics of the Fe-O group at the absorption peak of 874.93 and 691.29 cm-1, while at 436.56 cm-1 indicated the presence of Zn-O compound bonds. The Fe3O4/ZnO nanocomposite with a weight ratio (1:10) showed good effectiveness in inhibiting S. aureus and E. coli bacteria at concentrations of 0.8 mg/m and 1 mg/ml. Meanwhile, in E. coli bacteria, the average diameter of the inhibition zone was relatively low. Thus Fe3O4/ZnO nanocomposite has the potential to be applied in antibacterial applicationsReferences
S. Arunima Rajan, A. Khan, S. Asrar, H. Raza, R. K. Das, and N. K. Sahu, “Synthesis of ZnO/Fe3O4/rGO nanocomposites and evaluation of antibacterial activities towards E. coli and S. aureus,” IET Nanobiotechnology, vol. 13, no. 7, pp. 682–687, 2019, doi: 10.1049/iet-nbt.2018.5330.
E. Guillot et al., “Suboptimal Ciprofloxacin Dosing as a Potential Cause of Decreased Pseudomonas aeruginosa Susceptibility in Children with Cystic Fibrosis,” Pharmacother. J. Hum. Pharmacol. Drug Ther., vol. 30, no. 12, pp. 1252–1258, Dec. 2010, doi: 10.1592/PHCO.30.12.1252.
T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, and S. Margel, “Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 374, no. 1–3, pp. 1–8, 2011, doi: 10.1016/j.colsurfa.2010.10.015.
A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, and A. Memic, “Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study,” Int. J. Nanomedicine, vol. 7, pp. 6003–6009, 2012, doi: 10.2147/IJN.S35347.
N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, and R. Hazan, “Alternative antimicrobial approach: Nano-antimicrobial materials,” Evidence-based Complement. Altern. Med., vol. 2015, 2015, doi: 10.1155/2015/246012.
L. S. Arias, J. P. Pessan, A. P. M. Vieira, T. M. T. De Lima, A. C. B. Delbem, and D. R. Monteiro, “Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity,” Antibiot. (Basel, Switzerland), vol. 7, no. 2, Jun. 2018, doi: 10.3390/ANTIBIOTICS7020046.
M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, “Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy,” Adv. Drug Deliv. Rev., vol. 63, no. 1–2, pp. 24–46, Jan. 2011, doi: 10.1016/J.ADDR.2010.05.006.
W. S. Cho et al., “Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles,” Part. Fibre Toxicol., vol. 10, no. 1, pp. 1–15, Oct. 2013, doi: 10.1186/1743-8977-10-55/TABLES/4.
J. Gupta, P. A. Hassan, and K. C. Barick, “Core-shell Fe3O4@ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications,” AIP Adv., vol. 11, no. 2, 2021, doi: 10.1063/9.0000135.
T. Dayakar., K. Venkateswara Rao., K. Bikshalu., V. Rajendar., and S. H. Park, “Novel synthesis and structural analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor,” Mater. Sci. Eng. C. Mater. Biol. Appl., vol. 75, pp. 1472–1479, Jun. 2017, doi: 10.1016/J.MSEC.2017.02.032.
M. Roeinfard and A. Bahari, “Nanostructural Characterization of the Fe3O4/ZnO Magnetic Nanocomposite as an Application in Medicine,” J. Supercond. Nov. Magn., vol. 30, no. 12, pp. 3541–3548, 2017, doi: 10.1007/s10948-017-4154-x.
K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, “Recent developments of zinc oxide based photocatalyst in water treatment technology: A review.,” Water Res., vol. 88, pp. 428–448, Oct. 2015, doi: 10.1016/J.WATRES.2015.09.045.
A. Sirelkhatim et al., “Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism,” Nano-micro Lett., vol. 7, no. 3, pp. 219–242, Apr. 2015, doi: 10.1007/S40820-015-0040-X.
J. Zhou, N. Xu, and Z. L. Wang, “Dissolving behavior and stability of ZnO wires in biofluids: A study on biodegradability and biocompatibility of ZnO nanostructures,” Adv. Mater., vol. 18, no. 18, pp. 2432–2435, 2006, doi: 10.1002/adma.200600200.
M. S. Barreto, C. T. Andrade, E. G. Azero, V. M. Paschoalin, and E. M. Del Aguila, “Production of Chitosan/Zinc Oxide Complex by Ultrasonic Treatment with Antibacterial Activity,” J. Bacteriol. Parasitol., vol. 08, no. 05, 2017, doi: 10.4172/2155-9597.1000330.
V. Madhubala and T. Kalaivani, “Phyto and hydrothermal synthesis of Fe 3 O 4 @ZnO core-shell nanoparticles using Azadirachta indica and its cytotoxicity studies,” Appl. Surf. Sci., vol. 449, pp. 584–590, 2018, doi: 10.1016/j.apsusc.2017.12.105.
V. M. Thanh, N. T. Huong, D. T. Nam, N. D. T. Dung, Le Van Thu, and M. T. Nguyen-Le, “Synthesis of ternary Fe3O4/ZnO/chitosan magnetic nanoparticles via an ultrasound-assisted coprecipitation process for antibacterial applications,” J. Nanomater., vol. 2020, 2020, doi: 10.1155/2020/8875471.
M. Shashank, H. S. B. Naik, G. Nagaraju, R. S. Keri, M. M. Naik, and K. Lingaraju, “Facile Synthesis of Fe3O4/ZnO Nanocomposite: Applications to Photocatalytic and Antibacterial Activities,” J. Electron. Mater., vol. 50, no. 6, pp. 3557–3568, 2021, doi: 10.1007/s11664-021-08816-9.
A. Bahari, M. Roeinfard, A. Ramzannezhad, M. Khodabakhshi, and M. Mohseni, “Nanostructured Features and Antimicrobial Properties of Fe 3 O 4 /ZnO Nanocomposites,” Natl. Acad. Sci. Lett., vol. 42, no. 1, pp. 9–12, 2019, doi: 10.1007/s40009-018-0666-6.
H. Nurul Ulya, A. Taufiq, and Sunaryono, “Comparative Structural Properties of Nanosized ZnO/Fe3O4 Composites Prepared by Sonochemical and Sol-Gel Methods,” IOP Conf. Ser. Earth Environ. Sci., vol. 276, no. 1, pp. 2–11, 2019, doi: 10.1088/1755-1315/276/1/012059.
M. Ghasemian Dazmiri, H. Alinezhad, Z. Hossaini, and A. R. Bekhradnia, “Green synthesis of Fe3O4/ZnO magnetic core-shell nanoparticles by Petasites hybridus rhizome water extract and their application for the synthesis of pyran derivatives: Investigation of antioxidant and antimicrobial activity,” Appl. Organomet. Chem., vol. 34, no. 9, p. e5731, Sep. 2020, doi: 10.1002/AOC.5731.
P. S. Fisika and U. N. Surabaya, “Sintesis Fe 3 O 4 dari Pasir Mineral Tulungagung Menggunakan Metode Kopresipitasi,” vol. 09, pp. 2015–2018, 2020.
O. D. Maynez-Navarro, M. A. Mendez-Rojas, D. X. Flores-Cervantes, and J. L. Sanchez-Salas, “Hydroxyl Radical Generation by Recyclable Photocatalytic Fe3O4/ZnO Nanoparticles for Water Disinfection,” Air, Soil Water Res., vol. 13, 2020, doi: 10.1177/1178622120970954.
A. Ahadpour Shal and A. Jafari, “Study of Structural and Magnetic Properties of Superparamagnetic Fe3O4–ZnO Core–Shell Nanoparticles,” J. Supercond. Nov. Magn. 2014 276, vol. 27, no. 6, pp. 1531–1538, Jan. 2014, doi: 10.1007/S10948-013-2469-9.
J. Saffari, N. Mir, D. Ghanbari, K. Khandan-Barani, A. Hassanabadi, and M. R. Hosseini-Tabatabaei, “Sonochemical synthesis of Fe3O4/ZnO magnetic nanocomposites and their application in photo-catalytic degradation of various organic dyes,” J. Mater. Sci. Mater. Electron., vol. 12, no. 26, pp. 9591–9599, Dec. 2015, doi: 10.1007/S10854-015-3622-Y.
M. Aliahmad and N. Nasiri Moghaddam, “Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles,” Mater. Sci. Pol., vol. 31, no. 2, pp. 264–268, Apr. 2013, doi: 10.2478/S13536-012-0100-6.
H. M. Joseph and N. Poornima, “Synthesis and characterization of ZnO nanoparticles,” Mater. Today Proc., vol. 9, pp. 7–12, 2019, doi: 10.1016/j.matpr.2019.02.029.
G. Xiong, U. Pal, J. G. Serrano, K. B. Ucer, and R. T. Williams, “Photoluminescence and FTIR study of ZnO nanoparticles: The impurity and defect perspective,” Phys. Status Solidi Curr. Top. Solid State Phys., vol. 3, no. 10, pp. 3577–3581, 2006, doi: 10.1002/pssc.200672164.
Y. Wang et al., “Facile fabrication of ZnO nanorods modified Fe3O4 nanoparticles with enhanced magnetic, photoelectrochemical and photocatalytic properties,” Opt. Mater. (Amst)., vol. 111, no. September, p. 110608, 2021, doi: 10.1016/j.optmat.2020.110608.
A. Jain, R. Bhargava, and P. Poddar, “Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods,” Mater. Sci. Eng. C, vol. 33, no. 3, pp. 1247–1253, Apr. 2013, doi: 10.1016/J.MSEC.2012.12.019.
P. Goyal, S. Chakraborty, and S. K. Misra, “Multifunctional Fe3O4-ZnO nanocomposites for environmental remediation applications,” Environ. Nanotechnology, Monit. Manag., vol. 10, pp. 28–35, 2018, doi: 10.1016/j.enmm.2018.03.003.
S. Singh, K. C. Barick, and D. Bahadur, “Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4-ZnO nanocomposite,” Powder Technol., vol. 269, pp. 513–519, 2015, doi: 10.1016/j.powtec.2014.09.032.
N. Padmavathy and R. Vijayaraghavan, “Enhanced bioactivity of ZnO nanoparticles - An antimicrobial study,” Sci. Technol. Adv. Mater., vol. 9, no. 3, Jul. 2008, doi: 10.1088/1468-6996/9/3/035004.
K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, and A. Punnoose, “Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems,” Appl. Phys. Lett., vol. 90, no. 21, 2007, doi: 10.1063/1.2742324.
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Authors who publish with Indonesian Physical Review Journal, agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International Licence (CC BY SA-4.0). This license allows authors to use all articles, data sets, graphics, and appendices in data mining applications, search engines, web sites, blogs, and other platforms by providing an appropriate reference. The journal allows the author(s) to hold the copyright without restrictions and will retain publishing rights without restrictions.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in Indonesian Physical Review Journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).