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 This study presents a numerical solution to the time-independent 

Schrödinger equation (TISE) for the Rosen-Morse potential using the 

Galerkin method. The Rosen-Morse potential, commonly used in 

atomic and molecular physics, has known analytical solutions under 

certain conditions. By transforming the TISE into a Jacobi differential 

equation, the analytical wave function and energy levels can be 

derived. However, analytical solutions are limited to ideal cases, 

highlighting the need for numerical methods in more general 

scenarios. The Galerkin method is implemented by expanding the wave 

function using Sine basis functions and projecting the TISE onto this 

basis. The resulting eigenvalue problem is solved by constructing the 

Hamiltonian matrix from kinetic and potential energy operators. 

Numerical results from the Galerkin method are compared with 

analytical solutions using graphical analysis, percentage error (% 

error), and statistical tests, including the Mann-Whitney U test. The 

results demonstrate that the probability densities obtained using the 

Galerkin method closely approximate the analytical solution. This is 

visually evident from the overlapping of probability density plots from 

both methods. The percentage error of the probability densities is below 

1 %, entirely.  Furthermore, the Mann–Whitney U test yields a p-

value less than 0.05, indicating that the differences between the two 

sets of probability densities are statistically insignificant at the 95% 

confidence level. These findings highlight the Galerkin method’s 

effectiveness and accuracy as a robust numerical tool for solving the 

TISE with the Rosen-Morse potential.   
 

 

 

 

  Copyright (c) 2025 by Author(s), This work is licensed under a Creative 
Commons Attribution-Share Alike 4.0 International License. 

 

Introduction 

The Schrödinger equation is one of the fundamental pillars of quantum mechanics, 
particularly in describing the dynamics of closed quantum systems. This equation, especially 
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in its time-independent form (TISE), is frequently employed to analyze stationary states and 
the discrete energy spectrum of particles within a given potential. However, modern 
developments in quantum mechanics have introduced various alternative frameworks to gain 
a more comprehensive understanding of quantum phenomena. For example, the Schrödinger 
picture emphasizes the time evolution of the wavefunction, whereas the Heisenberg picture 
transfers the time dependence to physical operators, which proves useful in analyzing 
dynamical systems and in the formulation of quantum field theory. On the other hand, the 
interaction picture is widely used in perturbation theory and in studying interacting systems, 
such as those encountered in quantum electrodynamics. Moreover, in open quantum systems 
that interact with external environments, approaches such as the master equation become 
essential. These frameworks describe the non-unitary evolution of the quantum state by 
incorporating effects such as decoherence and dissipation phenomena not accounted for by 
the standard Schrödinger equation. Recognizing the diversity of these perspectives, the use of 
the TISE in this study serves as a controlled analytical starting point, laying the foundation for 
further exploration of quantum dynamics and possible extensions into alternative frameworks 
depending on the physical context of the system under investigation. Solving the TISE allows 
us to obtain the wave function and energy of a particle in various potential forms. One 
particularly interesting potential to study is the Rosen-Morse potential, which has applications 
in various fields such as atomic physics, molecular physics, and other quantized systems 
[1][2][3] [4][5]. This potential can also be used to model interactions in two-level quantum 
systems, potential barriers with asymptotic characteristics, and asymmetric potential well 
profiles. The Rosen–Morse potential incorporates exponential and hyperbolic features that are 
not present in many classical potential forms.  

Compared to classical potentials such as the Coulomb potential, the harmonic oscillator, and 
the infinite square well, which possess well-known analytical solutions and ideal symmetries. 
The Rosen–Morse potential offers a more complex and flexible structure due to its asymmetry 
and its dependence on shape parameters. Furthermore, in comparison with other potential 
forms such as the delta potential (Dirac delta potential), the finite square well, the Morse 
potential, and the Pöschl–Teller potential, the Rosen–Morse potential remains distinctive in its 
ability to smoothly transition between a barrier and a well structure simply by adjusting a few 
parameters. The complexity of the Rosen–Morse potential reflects more realistic physical 
systems, especially in non-ideal environments or long-range interactions where symmetry is 
broken. In many practical scenarios, real-world quantum systems do not conform to simple 
potential models. Thus, the development of numerical methods to solve the TISE for more 
intricate potentials like Rosen–Morse is of significant importance. In recent decades, 
computational quantum mechanics has seen substantial progress in the development of 
numerical methods to address such challenges. Finite difference methods (FDM), finite 
element methods (FEM), spectral methods, and variational approaches have all been 
employed with increasing sophistication to solve quantum systems. These techniques enable 
researchers to address nontrivial potentials and boundary conditions with improved accuracy 
and computational efficiency. Among these, spectral methods—including Galerkin-based 
formulations, offer exponential convergence for smooth problems and are particularly 
effective for problems with well-behaved boundary conditions. Consequently, this research 
also serves as a platform to test and evaluate the effectiveness of a spectral-based numerical 
approach, namely the Galerkin method, in handling quantum systems with higher potential 
complexity. 
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Analytical methods are often used to solve the Schrödinger equation, but these methods can 
only be applied to specific cases with potential forms that allow for exact solutions. Although 
analytic methods provide exact and accurate solutions, they exhibit several significant 
limitations, particularly in their application to complex potential forms or systems involving 
multiple variables. These methods are typically restricted to specific types of potentials (such 
as the infinite square well, harmonic oscillator, the Coulomb potential, and similar well-
studied ones). Analytic approaches also rely heavily on special functions (e.g., Jacobi, 
Legendre, or hypergeometric functions), which can be difficult to compute and analyze. In 
contrast, numerical methods such as the Galerkin method, the Finite Difference Method 
(FDM), the Shooting Method, and the Variational Method offer greater flexibility, can handle 
a wider range of potential functions, and are generally easier to implement, although the 
results are approximate in nature. Therefore, numerical methods serve as an important 
alternative approach to solving the Schrödinger equation for various types of potentials. In 
this study, the Galerkin method is employed as a numerical approach to solving the time-
independent Schrödinger equation with the Rosen-Morse potential. The Galerkin method is 
known as one of the finite element-based approximation techniques that effectively handle 
various types of differential equations [6][7] [8] [9] [10] . Unlike a standard expansion method, 
which directly approximates the solution via truncated basis functions and determines 
coefficients without necessarily enforcing residual orthogonality, the Galerkin method 
requires the residual to be orthogonal to all basis functions in the chosen subspace. This 
projection property leads to a more rigorous and systematically derived set of algebraic 
equations, produces a symmetric and well-conditioned system (for orthonormal bases), and 
generally yields higher accuracy and convergence for smooth potentials such as Rosen–Morse. 

This study is expected to provide further insights into the application of the Galerkin method 
in quantum mechanics and to enhance the understanding of numerical solutions to the 
Schrödinger equation. Additionally, the obtained results can serve as a reference for the 
development of other, more efficient and accurate numerical methods for solving differential 
equations in quantum physics and related fields. 

Theory and Calculation  

Analytical Solution to the TISE for the Rosen-Morse Potential 
 
The time-independent Schrödinger equation (TISE) is expressed as [11][12] [13][14]: 
 

−ħ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)                                                                             (1)  

 
where ψ(x) is the wave function, E is the eigen energy, ℏ is the reduced Planck constant, m is 
the mass of the particle, V(x) is the potential energy, and x denotes the position of the particle. 
The Rosen–Morse potential V(x) is given by [15]:  
 

𝑉(𝑥) = 2𝜆 𝑡𝑎𝑛ℎ(𝛼𝑥) −
𝑠(𝑠+1)

𝑐𝑜𝑠ℎ⁡(𝑥)2
                                                                              (2)  

 
thus, (2) becomes:  
 

−ħ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 2𝜆 𝑡𝑎𝑛ℎ(𝛼𝑥) −

𝑠(𝑠+1)

𝑐𝑜𝑠ℎ⁡(𝑥)2
𝜓(𝑥) = 𝐸𝜓(𝑥)                                             (3)                                                                           
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where 𝜆  is the potential asymmetry parameter, 𝛼 denotes potential width and s is a parameter 
proportional to the potential depth. Increasing s makes the well deeper and narrower. The 
shape of the potential energy curve V(x) for several values of 𝜆 and 𝛼 = 1 is shown in Figure 
1. 
 

 
Figure 1. Rosen-Morse potential 

 
The normalized bound-state solutions for this equation (3) can be expressed directly in terms 
of x [15]:   
 

𝜓𝑠,𝜆(𝑛; 𝑥) = 𝑀𝑛𝑐𝑜𝑠ℎ
−(𝑠−𝑛)(𝑥)⁡𝑒(−

𝜆𝑥

𝑠−𝑛
)⁡𝑃𝑛

(𝜇,𝜈)
(𝑡𝑎𝑛ℎ(𝑥))                                    (4) 

 

𝑀𝑛 is a normalization constant and   𝑃𝑛
(𝜇,𝜈)

 denotes the Jacobi polynomial [16][17][18][19]. The 
corresponding energy levels, on the other hand, are given by: 
 

𝐸𝑛 = −(𝑠 − 𝑛)2 +
𝜆2

(𝑠−𝑛)2
                                                                   (5) 

 

This solution is valid for quantum numbers n = 0,1, …, 𝑛𝑚𝑎𝑥, where 𝑛𝑚𝑎𝑥 < 𝑠 − √𝜆. 
 
Solving the TISE for the Rosen-Morse Potential by Using the Galerkin Method 

The Galerkin method is a numerical approach that can be employed to solve the TISE with a 
potential defined over an infinite domain, such as the Rosen-Morse potential. The following 
are the steps of the Galerkin approach used to solve the TISE for the Rosen-Morse potential: 
a) Define the domain 𝑥 ∈ [−𝐿, 𝐿] sufficiently large such that the bound-state wavefunction 

decays to zero at the boundaries (e.g., L∼10). 
b) Use an orthonormal basis over this interval, for example, sine 𝜙𝑛(𝑥) and cosine 

𝜑𝑛(𝑥)⁡function [20][21][22][23][24] which satisfy the boundary conditions 𝜙𝑛(−𝐿) =
𝜙𝑛(𝐿) = 0.  
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𝜙𝑛(𝑥) =
1

√𝐿
sin⁡(

𝑛𝜋(𝑥+𝐿)

2𝐿
)                                                                                          (6)  

 

𝜑𝑛(𝑥) =
1

√𝐿
cos⁡(

(2𝑛−1)𝜋(𝑥+𝐿)

2𝐿
)                                                                                 (7)  

 
c) Construct the Hamiltonian matrix 𝐻, defined as:  

 

𝐻𝑖𝑗 = ∫ 𝜙𝑖(𝑥)
𝐿

−𝐿
[−

𝑑2

𝑑𝑥2
+ 𝑉(𝑥)]𝜙𝑗(𝑥)𝑑𝑥                                                                (8)  

  
  
 This matrix is computed by evaluating the kinetic component ( 𝑇𝑖𝑗) and potential energy 

one (𝑉𝑖𝑗): 

 

𝑇𝑖𝑗 = ∫ 𝜙𝑖(𝑥) (−
𝑑2

𝜕𝑥2
)𝜙𝑗(𝑥)

𝐿

−𝐿
𝑑𝑥 = (

𝑛𝜋

2𝐿
)
2
                                                              (9)  

𝑉𝑖𝑗 = ∫ 𝜙𝑖(𝑥)
𝐿

−𝐿
𝑉(𝑥)𝜙𝑗(𝑥)𝑑𝑥                                                                                   (10)  

 
 where V(x) is the Rosen–Morse potential as defined in (2). Eq. (10) is evaluated 

numerically. The spatial domain x ∈ [−L, L] is discretized into Nx equally spaced grid 
points (in our implementation, L=10 and Nx =1001). The basis functions 𝜙𝑖(𝑥) and 𝜙𝑗(𝑥), 

as well as the Rosen–Morse potential V(x), are computed at each grid point. The integral 
is then approximated using the composite trapezoidal rule:  

𝑉𝑖𝑗 = ∑ 𝜙𝑖(𝑥𝑘)𝑉(𝑥𝑘)𝜙𝑗(𝑥𝑘)
𝑁𝑥
𝑘=1 ∆𝑥, where ∆𝑥 =

2𝐿

𝑁𝑥−1
 is the grid spacing.  

d) The wavefunction expressed as: 
 

𝜓(𝑥) = ∑ 𝑐𝑖𝜙𝑖(𝑥)
𝑁
𝑖=1                                                                                                 (11)  

       
 N is the total number of basis functions, ci are the expansion coefficients and 𝜙𝑖(𝑥)⁡the 

chosen basis function. Coefficients 𝑐𝑖 can be reached by solving the eigenvalue equation:  
 

𝐇𝐜 = 𝐸𝐜                                                                                                                   (12)  
 
 E and c are the eigenvalues (energy levels) and the corresponding basis coefficients 

(eigenvectors), respectively.     

In summary, the Galerkin method is a projection technique in which the exact solution of the 
time-independent Schrödinger equation (3) is approximated within a finite-dimensional 
subspace spanned by a chosen set of basis functions. The wavefunction is expressed as a linear 
combination of these basis functions, and this approximate form is substituted into equation 
(3). The difference between the left-hand and right-hand sides of equation (3), known as the 
residual, is then required to be orthogonal to each basis function in the subspace. This 
orthogonality condition transforms the continuous differential equation into a discrete matrix 
eigenvalue problem of the form H c = E c, where the matrix elements Hij are computed from 
the kinetic and potential energy integrals. The eigenvalues E provide the approximate energy 
levels, and the eigenvectors c yield the corresponding expansion coefficients for the 
approximate wavefunctions. Increasing the number of basis functions systematically 
improves the accuracy, and in the limit of an infinite basis set, the exact solution is recovered. 



 Indonesian Physical Review. 8(3): 804-814  

809 
 

Experimental Method 

Initially, a flowchart was designed based on steps (a) through (e) as mentioned earlier. 

Following the design of the flowchart, the next step involved implementing the flowchart into 

program code. The programming language used in this study was Python [25]. The computer 

utilized for this research was an HP laptop with the following specifications: Intel Core i7 

processor, 16 GB RAM, and an 8 GB GPU. The complete source code and flowchart for the 

solution of the TISE by the Galerkin method can be obtained upon request by contacting the 

author via email.   

Result and Discussion 

The solutions of the TISE for the Rosen-Morse potential using the Galerkin method and the 

analytical approach are presented in the form of wave functions and energy levels. The wave 

functions, ψn(x), for quantum numbers n = 0, 1, …, 4, are presented in Figure 3. In this study, 

each wave function ψn(x), was sampled using 1001 data points (Nx) uniformly distributed over 

the domain L= [−10,10]. A total of 700 basis functions (N) were employed. 

 

 

 

(a)  (b) 

 

 

 

 

(c)  (d) 
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(e) 

Figure 3. Plotting of (a) ψ0(x), (b) ψ1(x), (c) ψ2(x), (d) ψ3(x) and (e) ψ4(x) 

Meanwhile, the energy levels En are presented in Table 1.  As shown in Table 1, the relative 

error is negligible (≈0) for low-energy states (i.e., small n). The error becomes noticeable 

starting from n=4, but remains below 0.12%, demonstrating the excellent convergence of the 

Galerkin method.  

                               Table 1. Energy levels, En - Analytical vs. Galerkin 

n En (analytical) En (Galerkin) Relative Error (%) 

0 -20.250000000000 -20.250000000000 0.000000000000 
1 -12.250000000000 -12.249999999999 0.000000000008 
2 -6.250000000000 -6.250000000000 0.000000000000 
3 -2.250000000000 -2.249999999943 0.0000000025337 
4 -0.250000000000 -0.249709809824 0.116076070400 

 

Figure 3 presents the wave function ψn(x) obtained from the Analytic and Galerkin methods, 

depicted by blue and red curves, respectively. Figure 4, on the other hand, shows the 

probability density |ψn(x)|2 obtained from both methods. Visually, it is evident that the curve 

produced by Galerkin method coincides with the Analytic one. Ideally, both curves should 

overlap, indicating that the analytical solution matches or at least closely approximates the 

numerical one[26][27]. 

 

 

 

 

(a)  (b) 
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(c)  (d) 

 
(e) 

Figure 4. Plotting of (a)|ψ0(x)|2, (b)|ψ1(x)|2, (c)|ψ2(x)|2, (d)|ψ3(x)|2 and (e)|ψ4(x)|2 

However, this visual observation requires quantitative validation. In order to quantitatively 

compare the computed results of|ψn(x)|2 obtained from the Galerkin and analytical methods, 

the percentage error (% error) and the Mann-Whitney U test (hereafter referred to as the U 

test) were employed[28]. The first quantitative comparison is the percentage error of the 

probability densities |ψₙ(x)|² obtained from both methods, presented in the following Table 

2. 

                                     Table 2. Percentage error |ψₙ(x)|² - Analytical vs. Galerkin 

n Percentage error (%) 

0 0.000000000000 
1 0.000000000002 
2 0.000000000000 
3 0.000000027077 
4 0.256905327729 

 

As shown in Table 2, the entire percentage errors are very small, smaller than 1 %, indicating 
that the results obtained from both methods are nearly identical. The second one is the U test. 
The U test was applied as a non-parametric approach that does not require the assumption of 
normal data distribution. This choice is particularly appropriate, since the quantum probability 
density functions |ψₙ(x)|² obtained from both analytical and Galerkin methods, as confirmed 
by the following Shapiro–Wilk test, do not exhibit normal distribution characteristics.  Examples 
of the Shapiro-Wilk normality test results for n = 3 and n = 4 are presented in Tables 3 and 4, 
respectively, with a significance level (α) of 0.05. 
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                                        Table 3. Saphiro-Wilk Test for|ψ3(x)|2 

Method Saphiro-Wilk statistic p-value  

Analytic 5.36e-01 2.80e-45 
Galerkin 5.36e-01 2.80e-45 

 

                                         Table 4. Saphiro-Wilk Test for|ψ4(x)|2 

Method Saphiro-Wilk statistic p-value  

Analytic 7.31e-01 2.43e-37 
Galerkin 7.31e-01 2.43e-37 

 

From Tables 3 and 4, it can be observed that all p-values are less than 0.05. Therefore, it can be 

concluded that the distributions of|ψ3(x)|2 and |ψ4(x)|2 obtained from the Analytical and 

Galerkin methods do not follow a normal distribution. Similarly, the results of the normality 

tests for n = 0, 1, and 3 also yield p-values less than 0.05, leading to the conclusion that the data 

do not follow a normal distribution. The results of the U test between the Galerkin and 

Analytical methods, with a significance level (α) of 0.05, are presented in Table 5.  

                                           Table 5. U Test - Analytical vs. Galerkin 

n U Statistic p-value 

0 4.92e+05 2.54e-01 
1 5.00e+05 4.83e-01 
2 5.00e+05 4.69e-01 
3 4.99e+05 4.44e-01 
4 4.88e+05 1.57e-01 

 

From Table 5, it can be observed that all p-values are greater than 0.05. Therefore, it can be 

concluded that the computed values of |ψₙ(x)|² (for n = 0, 1, ..., 4) obtained using the Galerkin 

method are statistically equivalent to those obtained using the analytical method, with a 95% 

confidence level. In other words, we are 95% confident that the results from both methods do 

not differ significantly.  

Conclusion 

The Galerkin method was shown to produce probability density functions |ψₙ(x)|² that 

closely match the analytical solutions. The percentage error was shown to be less than 1%, 

indicating high numerical accuracy. Statistical analysis using the Mann-Whitney U test 

confirmed no significant differences between the two methods at the 95% confidence level. 

Therefore, the Galerkin method is validated as an accurate numerical approach for solving the 

TISE involving the Rosen-Morse potential. 
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