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 This study introduces a reformulation of geometrical optics through 
the framework of Abelian U(1) gauge theory. By leveraging this 
novel approach, phase equations are derived, serving as the 
cornerstone for determining the trajectories of light rays. The 
proposed formulation is validated through simulations of light 
propagation in diverse scenarios, including homogeneous refractive 
index media, vacuum, anisotropic materials, and optical 
metamaterials. These results underscore the versatility and predictive 
power of this gauge-theoretic approach, opening new avenues for 
exploring and modeling complex optical phenomena. 
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Introduction 

Geometric optics is one of the classical approaches in physics to describe the propagation of 
light, especially in the limit of very small wavelengths (𝜆→0). This approach uses the concept of 
light rays propagating through a medium with a certain refractive index. It is often used to 
describe the phenomena of refraction, reflection, and optical paths in various complex media 
[1–3]. In the electromagnetic framework, geometric optics can be derived from Maxwell's 
equations through the eikonal equation approach, which describes the path of light as a classical 
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limit solution of electromagnetic waves [4–7]. This approach has also been extended to include 
anisotropic media and refractive index gradients using the gauge field [8–10]. 

Recent research has attempted to reformulate geometric optics within the framework of Abelian 
U(1) gauge theory [11]. Nevertheless, this reformulation, which holds potential for optical 
engineering, contains conceptual inaccuracies that prevent it from making valid physical 
predictions, such as the propagation of light in straight lines in a medium with a homogeneous 
refractive index or in a vacuum, as well as light refraction in optical metamaterials (with a 
negative refractive index) and anisotropic media. 

The article also claims that the optical phase, refractive index, and propagation of light beams 
can be understood through gauge potentials, field strength tensors, and topological structures. 
This claim is mathematically intriguing as it utilizes the formalism of gauge theory, which is 
often used to explain particle physics and quantum field phenomena [12–18]. Previously, 
several studies have indeed demonstrated the application of gauge theory to light propagation 
in complex media, such as anisotropic media and metamaterials [19–22]. Unfortunately, the 
claim has not been explained in detail regarding which aspects of geometric optics are 
connected with gauge theory. 

In the following analysis, the inaccuracies in previous research, particularly phase shifts in light, 
will be addressed. A corrected formulation of geometric optics within the framework of gauge 
theory will also be presented to ensure its physical accuracy. Simulations of light passing 
through homogeneous refractive index media, a vacuum, anisotropic materials, and optical 
metamaterials are included to demonstrate potential outcomes that could be observed in future 
experiments. 

Comprehending phase shifts in light is essential for applications in interferometry, optical 
metrology, and fiber-optic communication [23–25]. Phase analysis plays a key role in material 
characterization, optical system design, and enhancing signal transmission across various 
scientific and technological fields. 

Phase Formula 

Geometrical optics in the framework of Abelian U(1) gauge field theory is proposed [11]. In 
ref.[11], it used the eikonal equation as a gauge theory in a (3+1)-dimensional vacuum space-
time using a weak-field approximation. Key equations include the gauge potential  
 

𝐀𝜇 = 𝐚𝜇(𝐫, 𝑡)𝑒𝑖𝑞(𝐫,𝑡)            (1) 

and the field strength tensor  
𝐅𝜇𝜈 = 𝜕𝜇𝐀𝑣 − 𝜕𝜇𝐀𝑣              (2) 

which describes the optical field in terms of the refractive index n(r) and other variables. 
Numerical simulations reveal that the refractive index can be approximated as n(r)=1.0001 in 
vacuum space-time and that the weak magnetic field magnitude ∣B∣=0.10452 T supports the 
weak-field approximation. 

The vacuum space-time is interpreted as a weak-field limit, where electromagnetic fields are of 
very low intensity. The study introduces the phase q(r,t), related to the refractive index, 
expressed as: 

𝑞(𝐫, 𝑡) = 𝑋 {∫ 𝑛(𝑟)
𝑟2

𝑟1
𝑑3𝑟 − 𝑐𝑡},       (3) 
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where X is a constant and the integral is take along the space. The refractive index is modeled as  

𝑛(𝑟) = 𝑛0 (1 −
𝑎𝑟2

2
),          (4) 

showing that it decreases with increasing distance from the source. In ref.[11], it used the 
amplitude ρ(r,t) and phase q(r,t) in the scalar field 

𝜙(𝐫, 𝑡) = 𝜌(𝐫, 𝑡)𝑒𝑖𝑞(𝐫,𝑡),           (5) 
highlighting the scalar field’s topological and isotropic properties in a vacuum. 

Numerical results show the refractive index decreases radially, confirming vacuum 
characteristics. The study also finds the weak magnetic field magnitude ∣B∣=0.10452 T, 
computed using. 

𝐁 = 𝛁 × 𝐀.                (6) 
These findings might reveal an innovative perspective connecting geometrical optics with 
gauge field theory, opening new avenues for exploring topological structures and weak-field 
conditions. 

Correction of the Phase Formula 

The revised phase formulation of geometric optics within the framework of gauge theory 
provides a more accurate description of light propagation in graded-index media and under 
weak-field approximations. In graded-index media, this approach enables precise modeling of 
light bending and refraction caused by spatial variations in the refractive index, thereby 
improving predictions of light focusing and beam shaping. Under weak-field conditions, the 
formulation ensures accurate modeling of light ray trajectories, even in the presence of small 
perturbations, effectively capturing subtle effects often overlooked in classical geometric 
optics. 

In this section, the phase equation (Equation (3)) will be investigated using fundamental 
concepts following the correction process with steps as shown in Figure 1. 
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Figure 1. Flowchart of the correction process. 
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   𝑐 =
𝜔

𝑘
   (7) 

where f is the frequency of the light,  is the angular frequency, 𝜆 is the wavelength of the 
light, and k is the wave number of the light, along with 

   𝜔 = 2𝜋𝑓    (8)  

and 

    𝑘 =
2𝜋

𝜆
 .    (9)  

When the light propagates through a medium, a change in the wavelength occurs, while the 
frequency remains constant. The wave speed of light in the medium then becomes 

    𝑣 =
𝜔

𝑘′    (10) 

with 

     𝑘′ =
2𝜋

𝜆′ .    (11)  

Meanwhile, the refractive index is defined as [1,2,5] 

     𝑛 =
𝑐

𝑣
  .  (12) 

The combination of Equations (10) and (12), followed by rearrangement, will yield the equation 

     𝑘′ =
𝜔

𝑐
𝑛 .   (13) 

The wave speed of light in the medium also satisfies the equation [1,2,5]  

     𝑣 =
𝑙

𝑡
    (14) 

where l is the distance traveled by light within the medium and t is the time interval for light 
propagation through the medium.  

The optical path length or the distance effectively traveled by the light wave is defined as    
[1,2,5] 

 𝛥 = 𝑐𝑡.    (15)  

The combination of Equations (12), (14), and (15) will yield the equation 

∆ = 𝑛𝑙.   (16) 

Multiplying Equation (10) by l and relating it to Equation (16), the resulting equation will be 

𝑘′𝑙 =
𝜔

𝑐
𝛥 .   (17) 

The phase in Equations (1) and (5) satisfies the equation [1,2,5] 

𝑞(𝐫, 𝑡) = 𝑘′𝑙 − 𝜔𝑡.           (18) 

The combination of Equations (17) and (18) will yield the equation 

𝑞(𝐫, 𝑡) =
𝜔

𝑐
(𝛥 − 𝑐𝑡).           (19) 

When light travels along a path l defined by the position vectors r1 and r2, the optical path 
length, as shown in Figure 2, will satisfy the equation  
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                          𝛥 = ∫ 𝑛(𝑟)𝑑𝑙
𝑟2

𝑟1
.       (20) 

The phase of the light wave therefore satisfies the combined Equations (19) and (20), expressed 
as: 

 𝑞(𝐫, 𝑡) =
𝜔

𝑐
(∫ 𝑛(𝑟)𝑑𝑙

𝑟2

𝑟1
− 𝑐𝑡).                (21) 

Based on Equation (21), it can be concluded that Equation (3) contains a mathematical form 

that is not physically clear, namely: ∫ 𝑛(𝑟)
𝑟2

𝑟1
𝑑3𝑟. The correct form of the integral should be: 

∫ 𝑛(𝑟)
𝑟2

𝑟1
𝑑𝑙, which corresponds to the concept of optical path length  [1-4].  

Consequences of the Correction 

The refined phase formulation improves the prediction of phenomena such as light bending 
and phase shifts in various media, including homogeneous media, vacuum, anisotropic 
materials, and optical metamaterials. This section demonstrates that the revision provides an 
accurate approximation of light wave propagation through the derivation of the light ray 
trajectory equation (geodesic equation) and the presentation of light ray trajectories in the 
media via numerical simulations. 

Optical geodesic equation 

Referring to Equation (21), Equation (3) is revised to become:  

   𝑞(𝐫, 𝑡) = 𝑋 {∫ 𝑛(𝑟)
𝑟2

𝑟1
𝑑𝑙 − 𝑐𝑡}.       (22) 

In Equation (22), one may select 

𝑞1 = ∫ 𝑛(𝑟)
𝑟2

𝑟1
𝑑𝑙.      (23) 

The shortest optical path length of the light wave from r1 to r2 at any given time satisfies the 
condition in accordance with the principle of least action, or Fermat’s principle in optics [1–3]: 

𝛿𝑞1 = 0.   (24) 

The variation of q1 is given by [26,27] 

𝛿𝑞1 = 𝛿 ∫ 𝑛(𝑟)
𝑟2

𝑟1

𝑑𝑙 

= ∫ 𝑛(𝑟)
𝑟2

𝑟1
𝛿(𝑑𝑙) + ∫ 𝛿𝑛(𝑟)

𝑟2

𝑟1
𝑑𝑙.    (25) 

In Equation (25), there are two relations, namely: 

𝛿(𝑑𝑙) = 𝛕. 𝛿(d𝐫)          (26) 

and 

                                            𝛿𝑛(𝑟) = 𝛁n. δ𝐫             (27) 

where 

𝛕 =
d𝐫

d𝑙
 .        (28) 

By combining Equations (24), (25), (26) and (27) with calculus of variations described in [26], it 
can be obtained 
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𝛿𝑞1 = ∫ {𝛁𝑛(𝑟) −
𝑑𝑛(𝑟)𝛕

𝑑𝑙
} .

𝑟2

𝑟1
δ𝐫𝑑𝑙 = 0    (29) 

where τ is the vector of tangential units with respect to the direction of light wave propagation.  

 

 

Figure 2. The possible trajectories of light. 

 

From Equation (29), it can be acquired the following relationship: 

𝛁𝑛(𝑟) =
𝑑𝑛(𝑟)𝛕

𝑑𝑙
. (30) 

Expanding Equation (30), it can be found the following Equation: 

𝛁𝑛(𝑟) = 𝑛(𝑟)
d𝛕

d𝑙
+ 𝛕(𝛕. 𝛁𝑛(𝑟))            (31) 

where  

                                                                           
𝑑𝑛(𝒓)

𝑑𝑙
= 𝛕. 𝛁𝑛(𝑟).          (32) 

Rearranging Equation (31) yields:  

d𝛕

d𝑙
=

1

𝑛(𝑟)
{𝛁𝑛(𝑟) − 𝛕(𝛕. 𝛁𝑛(𝑟))}.     (33) 

Meanwhile, it is known that 

𝛕. 𝛕 = 1 (34) 

and thus, it can be determined 

𝛕.
d𝛕

d𝑙
= 0.  (35) 

If the light wave propagates along a curved path with radius of curvature R, as illustrated in 
Figure 3, then the following relation holds: 
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𝛕.
𝐑

𝑅
= 0   (36) 

where   

𝐑 = 𝑅𝛈   (37) 

and 𝜼 is the vector of normal units (perpendicular to the direction) of light wave propagation. 
By combining Equations (36) and (37), it can be found  

𝛕.
𝛈

𝑅
= 0.   (38) 

 

Figure 3. The curved path of light. 

 

By comparing Equations (35) and (38), the resulting equation is obtained  

d𝛕

d𝑙
=

𝛈

𝑅
 . (39) 

Equation (39) is known as Frenet-Seret’s equation [27,28].  

The combination of Equations (33) and (39) gives the following equation: 

𝛈

𝑅
=

1

𝑛(𝑟)
{𝛁𝑛(𝑟) − 𝛕(𝛕. 𝛁𝑛(𝑟))}.    (40) 

If Equation (40) is subjected to a dot operation with η, it will give the equation 

1

𝑅
=

𝛈

𝑛(𝑟)
. 𝛁𝑛(𝑟).    (41) 

Equations (40) and (41) are respectively referred to as the ray formation equation and the ray 
deflection equation [5]. 
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Based on Equation (41), it can be deduced that the direction of wave propagation is influenced 
by variations in the refractive index. Specifically, as the refractive index increases, the wave 
undergoes a change in direction. Hence, in a homogeneous medium where n(r) is constant, or 
in free space where n(r)=1, so 𝛁𝑛(𝑟) = 0, the wave trajectory remains unaffected by refraction. 
In such cases, the bending radius R approaches infinity, indicating that the wave path is linear.  

The light ray trajectory equation (geodesic equation) can be derived by combining Equations 
(28) and (33), resulting in the following form: 

d2𝐫

d𝑙2 =
1

𝑛(𝑟)
{𝛁𝑛(𝑟) − 𝛕(𝛕. 𝛁𝑛(𝑟))}.   (42) 

By reviewing the Abelian U(1) gauge theory [29], it can be understood that Equation (42) 
incorporates the refractive index n(r), which is analogous to the gauge field, the gradient of the 
refractive index ∇n(r), which is analogous to the field tensor, the optical force ∇n(r)/n(r), which 
is analogous to the electromagnetic force, light rays, which are analogous to charged particles, 
and the role of the refractive index in altering light paths, which is analogous to the role of 
potential in influencing particle trajectories. 

Simulation 

The simulation of phase shifts, and trajectory of light bending, in light trajectories through a 
homogeneous medium (A), vacuum (B), anisotropic materials (C), and optical metamaterials 
(D) is presented in Figure 4 and Figure 5. In the simulation, light passes through: (A) a medium 
represented by a series of identical refractive index values, (B) a vacuum represented by 
refractive index values equal to 1, (C) anisotropic materials represented by the boundary 
region between two media, and (D) optical metamaterials represented by negative refractive 
index values, as shown in Table 1. 

The simulation is based on Equation (17), Equation (39), and Equation (42), with the 
implementation of the numerical method described in [30]. Equation (17) can be expressed as 

𝜑𝑖 ≈
𝜔

𝑐
𝑛𝑖(𝑟𝑖 − 𝑟𝑖−1)  (43) 

due to  

∆= 𝑛𝑑𝑙 ≈ 𝑛𝑖(𝑟𝑖 − 𝑟𝑖−1) .  (44) 

Equation (41) can be approximated as 

1

𝑅𝑖+1
≈

𝑛𝑖+1−𝑛𝑖−1

2𝑛𝑖.∆𝑟
 ,  (45) 

based on the simplification of Equation (41) into   

 
1

𝑅
=

𝑑𝑛

2𝑛𝑑𝑙
 ,  (46) 

where the central difference approximation is applied as  

𝑑𝑛

𝑑𝑙
≈

𝑛𝑖+1−𝑛𝑖−1

2∆𝑟
 .  (47) 

Equation (42) can further be expressed as 

𝑟𝑖+1 ≈ 2𝑟𝑖 − 𝑟𝑖−1 +
(∆𝑙)2

𝑛𝑖
(

𝑛𝑖+1−𝑛𝑖−1

2∆𝑟
) (1 − 𝜏2),        (48) 

where 
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d2𝐫

d𝑙2 ≈ (
𝑟𝑖+1−2𝑟𝑖+ 𝑟𝑖−1

(∆𝑙)2 ) ,  (49) 

𝛁𝑛(𝑟) ≈ (
𝑛𝑖+1−𝑛𝑖−1

2∆𝑙
) ,  (50) 

and 

𝛕(𝛕. 𝛁𝑛(𝑟)) ≈ 𝜏2 (
𝑛𝑖+1−𝑛𝑖−1

2∆𝑙
).       (51) 

The graph in Figure 4 depicting the relationship between phase shift  and propagation path 
length l can be analyzed based on the characteristics of the media through which light travels. 
In regions where light propagates through homogeneous media with constant refractive 
indices, such as vacuum or transparent materials, the phase shift remains stable or linear with 
respect to the path length. This behavior is evident in the regions between l=0 m and l=10 m, 

l=15 m and l=41 , and l=45 m and l=53 m, where  is close to zero. These regions reflect the 
absence of significant disturbances or interactions, indicating stable light propagation. 

In contrast, regions between l=10 m and l=11 m, as well as l=14 m and l=15 m, exhibit moderate 
fluctuations, suggesting interactions with anisotropic materials. These materials have refractive 
indices that depend on the direction of propagation or polarization of light, leading to more 
noticeable phase shifts. Such fluctuations can be attributed to birefringence phenomena, where 
light splits into two beams with different propagation speeds depending on polarization, 
resulting in phase variation. 

Additionally, the sharp fluctuations observed in the region between l=42 m and l=44 m indicate 
interactions with optical metamaterials having negative refractive indices. In such materials, 
the wave vector and energy flow vector (Poynting vector) are oppositely directed, leading to 
unconventional effects like negative refraction. The significant positive phase shift followed by 
a sharp negative shift in this region reflects the distinctive properties of negative-index 
materials. 

In summary, the graph illustrates the journey of light through a combination of propagation 
paths that include homogeneous media (stable), anisotropic materials (moderate fluctuations), 
and optical metamaterials (drastic fluctuations). This analysis provides insights into the 
complex interactions of light with various types of media, which are particularly relevant in 
advanced optical systems such as interferometers, metamaterials, or integrated optical devices. 

The graph in Figure 5 shows the relationship between the inverse radius of curvature 1/R and 
the propagation path length l, providing insights into the wavefront behavior as light interacts 
with different media. In regions where light propagates through homogeneous media or 
vacuum—specifically l=0 m to l=10 m, l=15 m to l=41 m, and l=45 m to l=53 m, the 1/R value 
remains constant, indicating a nearly planar wavefront with no significant curvature changes. 

In contrast, regions between l=10 m and l=11 m, and l=14 m and l=15 m, exhibit ripple in 1/R, 
suggesting interactions with anisotropic materials. These fluctuations indicate perturbations in 
the wavefront curvature, likely caused by birefringence or directional-dependent refractive 
indices within the material, momentarily distorting the wavefront. 

The most pronounced behavior is observed in the region between l=42 m and l=44 m, where 
1/R not only exhibits sharp ripples but also becomes negative. This curvature inversion is a 
hallmark of optical metamaterials with negative refractive indices, where the wavefront 
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exhibits unusual effects such as reverse focusing or negative curvature due to the opposition of 
phase velocity and energy flow. 

Together with the phase shift analysis, this graph highlights the distinct interactions of light 
with different media along the propagation path. Homogeneous regions are characterized by 
stable and planar wavefronts, anisotropic materials introduce moderate perturbations, and 
optical metamaterials cause sharp ripples, demonstrating their unique optical properties. 

 

Figure 4. The phase shift of light through a homogeneous medium (A), vacuum (B), 

anisotropic materials (C), and optical metamaterials (D). 
 

 

Figure 5. The trajectory of light bending through a homogeneous medium (A), vacuum 

(B), anisotropic materials (C), and optical metamaterials (D). 

Table 1. Simulation results for  = 0.9.  
    

n ( r ) l (m) 1/R (m-1)  (m) 
n ( r 

) 
l (m) 1/R (m-1)  (m) 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60

 (./c)

l (m)

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

1/R (m-1)

l (m)

A, B A,B 
C 

D 

A, B A, B 

A, B 

A, B 

C 

D 
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1 0 0.000000001 0 1 27 0.000000001 0.3325 

1 1 0.000000001 0 1 28 0.000000001 0.3325 

1 2 0.000000001 0 1 29 0.000000001 0.3325 

1 3 0.000000001 0 1 30 0.000000001 0.3325 

1 4 0.000000001 0 1 31 0.000000001 0.3325 

1 5 0.000000001 0 1 32 0.000000001 0.3325 

1 6 0.000000001 0 1 33 0.000000001 0.3325 

1 7 0.000000001 0 1 34 0.000000001 0.3325 

1 8 0.25 0 1 35 0.000000001 0.3325 

1 9 0.166666667 0.07125 1 36 0.000000001 0.3325 

1 10 0.000000001 0.19 1 37 0.000000001 0.3325 

1.5 11 0.000000001 0.30875 1 38 0.000000001 0.3325 

1.5 12 -0.166666667 0.4275 1 39 -1.25 0.3325 

1.5 13 -0.25 0.3325 1 40 0.833333333 -0.1425 

1.5 14 0.000000001 0.3325 1 41 0.000000001 -0.02375 

1 15 0.000000001 0.3325 -1.5 42 -0.833333333 0.095 

1 16 0.000000001 0.3325 -1.5 43 1.25 -0.30083 

1 17 0.000000001 0.3325 -1.5 44 0.000000001 -0.30083 

1 18 0.000000001 0.3325 1 45 0.000000001 -0.30083 

1 19 0.000000001 0.3325 1 46 0.000000001 -0.30083 

1 20 0.000000001 0.3325 1 47 0.000000001 -0.30083 

1 21 0.000000001 0.3325 1 48 0.000000001 -0.30083 

1 22 0.000000001 0.3325 1 49 0.000000001 -0.30083 

1 23 0.000000001 0.3325 1 50 0.000000001 -0.30083 

1 24 0.000000001 0.3325 1 51 0.000000001 -0.30083 

1 25 0.000000001 0.3325 1 52 0.000000001 -0.30083 

1 26 0.000000001 0.3325 1 53 0.000000001 -0.30083 

 

Conclusion 

This study revisits the formulation of geometrical optics and proposes a possible refinement 

using a gauge-theoretic approach, allowing for the derivation of phase equations and precise 

modeling of light ray trajectories. Through extensive simulations across diverse optical media, 

the method showcases its versatility and powerful predictive ability, offering a solid framework 

for exploring and understanding complex optical phenomena. 
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