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 Black holes are thermodynamic objects that emit Hawking radiation 

near the event horizon of a black hole according to the theory of 

quantum gravity in curved space-time. This radiation is manifested as 

the temperature of a black hole, known as the Hawking temperature. 

According to black hole thermodynamics, the black hole horizon area 

corresponds to the entropy. The increase in the horizon area is 

predicted due to the influence of dark energy, which can push the 

horizon of the black hole away from its center, thus significantly 

affecting the radiation of the black hole. Here, we investigate the 

Hawking temperature of the Schwarzschild black hole under the effect 

of quintessence dark energy. The results show that the increase in 

quintessence reduces the horizon radius of the black hole and lowers 

its Hawking temperature, highlighting the direct relationship between 

dark energy and black hole dynamics. 
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Introduction 

Black holes are celestial objects with a region of spacetime that has such strong gravity that 
nothing, not even light, can escape from it. According to the theory of Albert Einstein's general 
relativity, an object with sufficient mass can deform in spacetime and form a black hole [1]. For 
many years, the black hole region was theoretically described as a space-time bounded by an 
event horizon [2]. This phenomenon is closely related to the universe’s accelerated expansion, 
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which is currently assumed to be driven by dark energy [3-7]. Consequently, the black hole 
horizon expands, influencing radiation emission from the black hole [8]. 

The use of thermodynamic concepts has opened a useful approach in understanding various 
processes related to horizons, such as the evaporation of black holes. The concept of black hole 
thermodynamics began to develop in the early 1970s based on the argument that the entropy 
of a black hole is directly proportional to the horizon area [9]. Stephen Hawking in 1975 
demonstrated that black holes emit radiation near their event horizons by integrating quantum 
mechanics and general relativity concepts [10]. The horizon area increases as more matter falls 
into the black hole. This event horizon area corresponds to entropy, which represents the heat 
energy emitted as Hawking radiation [11-16]. Since the event horizon possesses entropy, it 
relates to temperature through the first law of thermodynamics [12-14]. The temperature 
measured near the black hole's event horizon is referred to as the Hawking temperature. The 
rate of black hole radiation emission depends on mass, angular momentum, and charge [17]. 

In four-dimensional (4D) spacetime with dark energy, black holes have been modelled using 
the Schwarzschild-de Sitter (SdS) black hole model [18-19]. This model combines the 
Schwarzschild black hole, describing small-scale phenomena over brief periods, with the 
Friedmann-Robertson-Walker (FRW) cosmological model, which represents larger-scale, long-
term cosmic evolution. The SdS black hole features two event horizons, with the temperatures 
derived from their surface gravity [20]. In 2017, Pappas and Kanti calculated the temperature 
of the SdS black hole using the cosmological constant (Λ) as a representation of dark energy 
[12]. While Λ is the simplest and most widely used model to describe dark energy, it faces 
challenges such as the fine-tuning and coincidence problems [4-5, 21]. As an alternative, 
quintessence was introduced by Ratra and Peebles in 1988 as a dynamic scalar field model 
whose energy density evolves with time. This evolution provides a natural explanation for the 
onset of cosmic acceleration and avoids the static nature of Λ. Compared to phantom energy 
models ( 1  − ), which often predicts unphysical scenarios like future singularities, maintains 
theoretical consistency within Einstein's general theory of relativity and quantum field theory. 
Because of its dynamic character and physical motivation, quintessence presents a promising 
and viable theoretical model for studying dark energy's influence in both cosmology and black 
hole physics [22]. 

In this study, the Hawking temperatures are analysed in the spacetime of Schwarzschild black 
holes influenced by quintessence, as formulated by Kiselev [23-24]. Kiselev was the first to solve 
the Einstein field equations using a generalized Schwarzschild metric by incorporating a 
quintessence field as the source of dark energy, which is believed to affect the spacetime 
structure surrounding black holes. While Fernando (2014) analyses the thermodynamic 
behaviour of Schwarzschild black holes surrounded by both quintessence and a cosmological 

constant using a fixed equation of state 2 3 = − [25], our study contributes a different 

perspective. Specifically, we focus on three distinct temperature quantities: the unnormalized 
Hawking temperature T0, the normalized temperature at the black hole horizon TBH, and the 
temperature associated with the cosmological horizon Tc . Detailed analysis is conducted on 
each temperature quantity with respect to variations in the quintessence normalization 
parameter (𝑞) and the black hole mass (𝑚). Through comparative graphical analysis, we explore 
how the presence of quintessence leads to thermal asymmetry between horizons. These aspects 
offer a novel thermodynamic interpretation of black hole behavior in the presence of dynamic 
dark energy. 
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In this paper, the discussion begins with the background of this research. Then the second part 
contains the theoretical basis and calculations for the Schwarzschild solution in the 
quintessence model. Afterward, we calculated the Hawking temperature (T0) in the third part. 
Subsequently, normalization was performed by modifying the Schwarzschild radius (r0) to 
obtain the black hole temperature or Hawking temperature with normalization (TBH). In the 
fourth part, we describe the results and discussion of the calculation and analysis of the 
Hawking temperature of the Schwarzschild black hole obtained. We created temperature 
graphs using Wolfram Mathematica software.  The last part of the paper is closed with a 
conclusion. All equations and calculations in this work are expressed in natural units                             

( 1BG c k    ). In this unit system, physical parameters, including mass, length, and 

temperature, are represented in consistent dimensionless form.  

The Schwarzschild Blackhole with Quintessence  

In the first few seconds of the formation of the universe, which was the beginning of the 

formation of primordial black holes, dark energy was not yet a dominant component in the 

cosmic energy. While it may have initially seemed that black holes were unrelated to dark 

energy, this notion is conceptually inaccurate.  Dark energy interacts with gravity by 

contributing to the energy-momentum tensor through the energy density and the negative 

pressure (𝑝𝑞 = 𝜔𝑞𝜌𝑞, with 𝜔𝑞 < 0). The negative pressure gives rise to a repulsive gravitational 

force, contributing to the universe’s faster rate of expansion and causes everything in the 

universe to move away, as supported by solutions to Einstein’s field equations in cosmology 

[27-28]. Two major models have been proposed to describe dark energy, i.e. the cosmological 

constant (Λ) which representing the energy density of a constant vacuum and the models  of a 

dynamic scalar field such as quintessence, phantom, k-essence, chameleon, tachyon, and 

dilaton [4]. 

Quintessence is one of the dark energy candidates that combines scalar fields with gravity. The 

influence of quintessence has been studied from various perspectives, such as the shift in 

gravitational frequencies and the bending of light [28]. If quintessence exists throughout the 

universe, then quintessence can also exist around black holes. In this research, we have studied 

the exact solution of static spherical symmetry with a black hole surrounded by quintessence 

[23]. Let us start by considering the spherically symmetric spacetime: 

2 2 2 2 2 2 2 2sinds e dt e dr r d r d    = − + + + ,    (1) 

where ,   denotes a function with respect to the radial distance (r) [29]. The relationship 

between spacetime geometry and the energy-momentum distribution of quintessence is 

expressed in the Einstein's field equations 

   ( )
2

1 8

2

qG
G g R Rg T

c

 

   

 
= − = 

 
,      (2) 

where G

 , g , R , R  , G , c, and 
( )q

T


  are the Einstein tensor, the metric tensor, the Ricci 

tensor, Ricci scalar, the Einstein gravitational constant, the speed of light, and the energy-

momentum tensor for quintessence, respectively. By using the natural units, 4 1G c    , 

the Einstein’s equations are obtained as follows 
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2 2

1 1
2 t

tT e
r r r

 −  
= − − + 

 
,      (3) 

2 2

1 1
2 r

rT e
r r r

 −  
= − + + 

 
,      (4) 

21
2 2

2 2 2
T T e

r

  

 

    
−      −
= = − + + − 

 
,    (5) 

where the prime (  ) represents the derivative of the radial distance r (example: d dr   ). 

The energy-momentum tensor for quintessence [23, 28-29] is given as: 

t r

t r qT T = = ,         (6) 

( )1
2

3 1q qT T 

   = = − + ,     (7) 

where q  and q  are the energy density and the equation of state parameter for quintessence, 

which represents the ratio of pressure and energy density of quintessence, q q qp = .  

If we define the principle of addition and linearity of the equation (3-4) by placing the 

relationship between the metric components, we obtain 

0t r

t rT T  =  + = .     (8) 

Without losing its generality because the static coordinate system is set by the gauge above 

const 0 + = = , then the constant can be eliminated by performing an appropriate time 

rescaling. Then, λ is defined as a linear differential equation in f, which is written as follows 

( )ln 1 f = − + ,      (9) 

with f  is a linear differential function [23]. Substitute eq. (9) to Einstein’s field equations (3-5), 

so that 

( )
2

1

2

t r

t rT T f rf
r

= = − +      (10) 

( )
1

2
4

T T f rf
r

 

 
= = − +      (11) 

From (6-7) and (10-11), the result is 

( ) ( )2 3 1 3 1 0q qr f rf f  + + + + = .    (12) 

 

It has two solutions in the form 

3 1q
q

q
f

r
 +

= ,      (13) 
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2
BH

m
f

r
= − ,      (14) 

with q  is the factor of normalization dependent on the energy density of quintessence and m is 

the mass of black hole. The function BHf  denotes the usual Schwarzschild solution for a point-

like black hole and this corresponds to a special choice of dust matter with 0q =  in qf  that 

will give the quintessence energy density ( q ) at 0r  . If taken 0q  , then 

( )3 1

3
.

2 q

q

q

q

r





+
= −      (15) 

From equations (6) and (7), the resulting trace of the tensor of energy-momentum is given by 

tt rr

tt rrT T g T g T g T g T g T   

   = = = + + + .   

( )1 3q qT  = −       (16) 

The expression for the Ricci scalar is derived from the trace of Einstein's equations (eq. 2), then 

the Ricci scalar is in the form of  

    
( )

( )3 1

1 3
2 3

q

q

qR g R T q
r

 

  




+

−
= = = .    (17) 

As shown in eq. (17), it exhibits a singularity at r = 0 when  1
3

0, , 1q  −  [23]. The equation 

shows that the energy density of quintessence directly affects the curvature of space-time. This 

divergence in the Ricci scalar indicates a true physical curvature singularity, similar in nature 

to the central singularity found in a Schwarzschild black hole, and not simply a mathematical 

construct or a coordinate-dependent singularity. Since the Ricci scalar is an invariant geometric 

quantity, this divergence signifies that the energy density of the quintessence becomes infinite 

at the origin. However, because this singularity is shielded within the event horizon, it remains 

unobservable to external observers, in accordance with the cosmic censorship conjecture [30]. 

In this study, we adopt a static spherically symmetric solution as proposed by Kiselev (2003), 

which approximates the quintessence effects of the region surrounding a black hole. Although 

quintessence is represented by a scalar field that evolves over time, ( )t , this static 

approximation remains valid under the assumption that the scalar field evolves slowly, and 

local gravitational effects dominate over cosmological time variation. Thus, we have obtained 

the exact solution of a spherically symmetric spacetime describing a black hole enveloped by 

quintessence has been obtained and is presented in the following metric form, [28-29] 

( ) ( )
12 2 2 2 2 2 2 2sinds h r dt h r dr r d r d  
−

= − + + + ,   (18) 

with the radial function, ( )h r ,  is formulated as 

( ) 3 1

2
1

q

m q
h r

r r
 +

= − − .     (19) 
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In this study, the black hole mass (m) is selected within a range that ensures the presence of an 

event horizon in the Schwarzschild solution modified by quintessence. In the Schwarzschild 

solution, the event horizon occurs when ( ) 0h r = . In case 1q = − , the quintessence includes the 

form of the cosmological constant and spacetime can be reduced to a Schwarzschild-de Sitter 

(SdS) black hole. The value of m must be large enough to ensure that the solution has an event 

horizon [32]. If m is too small or does not match the value of the quintessence parameter q, then 

the solution may become unstable or lose its physical interpretation. The choice of mass values 

in this study follows a numerical method to ensure that an event horizon exists, thereby 

enabling physically valid calculations of the Hawking temperature. 

The Hawking Temperature in The Horizons of Blackhole and Cosmology  

Stephen Hawking combined the general relativity with quantum field theory to explain the 

emission of black holes radiation, resulting in a thermal spectrum similar to blackbody 

radiation [33-34]. This emission is known as Hawking radiation. Hawking radiation describes 

the particle emission rate, portraying black holes as hot objects where the temperature is 

directly proportional to the surface gravity, expressed by the following equation: 

0
2

hT



= ,      (20) 

where 0T  refers to the Hawking temperature at the black hole horizon and h  represents the 

surface gravity of black hole [35]. At the black hole horizon, the surface gravity is given by 

( )( )2 1
lim

2 h
h

r r
D K D K 

 
→

= .     (21) 

In this expression, D  denotes the covariant derivative operator, rh corresponds to the radius of 

the black hole horizon, and t t
K  


=  is the timelike Killing vector field with a normalisation 

constant t . It is important to note that although the derivative of the radial function can yield 

negative values for the horizon, this does not imply a physically negative temperature. The 

physically meaningful Hawking temperature is always non-negative because it is defined by 

taking the absolute value of the surface gravity: 

,

1 1

2 h
h r r

g
g g

 

 


=

=
−

.     (22) 

This ensures that the temperatures T0, TBH, and Tc remain physically interpretable in all regions 

of spacetime affected by the quintessence. The calculation of the surface gravity of the black 

hole involves analysing the radial function h(r) from the Schwarzschild metric with 

quintessence.  

The Hawking temperature (T0) based on the surface gravity of this metric can be determined 

by specifying the state parameter of quintessence ( q ) which  has a value range of 1
3

1 q−   −  

[5, 21, 24, 27- 28]. This range is based on cosmological theory which shows that if 1
3q  − , then 

dark energy plays a role as a cause of the acceleration expansion of the universe. If 1q = − , this 
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field becomes identical to the cosmological constant Λ. For 1
3q  − , this field no longer acts as 

dark energy in standard cosmology. Therefore, the parameter range q  used in this study 

follows the physical constraints set by previous cosmological models. In this study, we choose 
2
3q = −  as a representative value of the quintessential state parameter within the range 

1
3

1 q−   − . This choice not only satisfies the condition for cosmic acceleration but also leads 

to tractable analytic solutions that exhibit horizon structure. Substituting this specific value     q

, eq. (19) simplifies to the following radial function: 

     ( )
2

1
m

h r qr
r

= − − ,     (23) 

which produces two different horizons, namely 

     
1 1 8

2
h

qm
r

q

− −
=      (24a) 

and 

     
1 1 8

2
c

qm
r

q

+ −
= .     (24b) 

In this context, hr  denotes the event horizon of the black hole and cr  refers to the cosmological 

horizon.  

 

Figure 1. Graph of f (r) and r with m = 0.3 and q = 0.15  

In the case of a Schwarzschild black hole with quintessence, the existence of these horizons is 

constrained by the condition 1 8 0qm−  , which implies that the black hole mass must satisfy 

1 8m q .When the mass reaches the critical value 1 8m q= , the two horizons merge into a single 

degenerate horizon at 1 2h cr r q= = . Therefore, for a fixed value of q , the maximum allowable 
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mass ( maxm ) for which distinct horizons can exist is 1 8q . For values of 𝑚 within the range 

max0 m m  , a static region exists between the black hole event horizon ( hr ) and the 

cosmological horizon ( cr ), as illustrated in Figure 1. 

In addition, a shaded exclusion region is included in the parameter space plot (Figure 2) to 

explicitly indicate the boundary where no real horizons exist, corresponding to the condition 

1 8 0qm−  . This region highlights the unphysical domain in which the discriminant becomes 

negative, causing the square root in equations (24a) and (24b) to yield imaginary values. Hence, 

only values of 𝑞 and 𝑚 satisfying 1 8 0qm−   are considered valid in subsequent analyses. 

 

Figure 2. Physical Region for Valid Horizon (1 8 0qm−  ) 

It should be emphasized that the derivative may produce negative values under certain 

conditions for the cosmological horizon; this does not imply a physically negative temperature. 

The physically meaningful Hawking temperature is always non-negative because it is defined 

by taking the absolute value of the surface gravity. The formulation of black hole surface 

gravity: 

1 2

2

h
h

h

qr

r


−
= ,      (25) 

 

 

and the formulation of the Hawking temperature at the black hole horizon: 
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0

1 21

4

h

h

qr
T

r

−
= .     (26) 

Black holes have very strong gravity and can attract anything, including light, so that the 

thermodynamics in the Schwarzschild spacetime with quintessence are not in equilibrium. In 

addition, this spacetime does not have an asymptotic fundamental boundary where all black 

hole parameters are expressed as radial functions h(r) in the metric [8]. This function 

interpolates the event horizon of the black hole (rh) and the cosmological horizon (rc), which 

have maximum values at the midpoint as shown in the following equation: 

2

0

2m
r

q
= ,      (27) 

where r0 represents the maximum point of the radial function h(r), so that the radial function 

becomes 

( )0 01 2h r qr= − .      (28) 

When the value of the quintessence parameter (q) is small, the quintessence contribution to the 

radial function h(r) becomes weak and approaches the Schwarzschild solution. The two 

horizons (rh and rc) will remain in positions close to the Schwarzschild configuration without 

quintessence, that is, they are only affected by the mass (m). For small q, it only gives a shift in 

the radius, which may be difficult to detect significantly. In addition, the positions of the 

horizons are less significantly altered by quintessence dark energy than by the cosmological 

constant ( ) as shown in [8]. As a result, the two horizons remain relatively far apart from each 

other so that the thermodynamics for each horizon can be analyzed independently [9]. 

However, with increasing black hole mass (m), the two horizons eventually draw closer and 

coincide at a critical boundary (rh = rc). An observer interacting with both horizons at any point 

in the causal region (rh < r < rc) will never be in thermodynamic equilibrium. 

To avoid singularities, it is necessary to normalize to ensure that the temperature value remains 

valid throughout spacetime. Because of this condition, the Hawking temperature formulation 

at the black hole horizon becomes 

( )0

1 21

4

h
BH

h

qr
T

h r r

−
= .     (29) 

From this equation it is shown that at a distance r0, the influence of the horizons of black hole 

and cosmological cancel each other out and the point is closest to the asymptotically flat 

boundary. Then, the surface gravity of the cosmological horizon ( )c  in the same way has a 

temperature according to the following equation: 

1 21

2 4

c c
c

c

qr
T

r



 

−
= − = − .    (30) 
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Results and Discussion 

The existence of dark energy (quintessence) is only indirectly detected through the global 
gravitational effect in the universe. This means that the influence of dark energy will remain if 
the universe expands because the gravity in the universe will cause a negative force (repulsive 
force) that will accelerate the universe expansion [38]. The existence of dark energy is supported 
by several cosmological observations, such as observations of Type Ia Supernovae, Cosmic 
Microwave Background (CMB) observations, Large-Scale Structure (LSS), Baryonic Acoustic 
Oscillations (BAO), and gravitational lens effects [4-5, 34-36]. From the results of the Hawking 
temperature calculations obtained previously, the presence of dark energy (quintessence) can 
change the geometry of space-time, increase the scale of the cosmological horizon, and reduce 
the surface gravity of black holes, which directly lowers the Hawking temperature. This effect 
has implications for the dynamics of black holes, where Hawking radiation becomes weaker in 
space-time with quintessence and can extend the evaporation time of black holes. 

 

 
Figure 3. Hawking temperature spectrum at the black hole horizon radius rh ≈ 0.7: without 
normalization (T0), with normalization (TBH) and Hawking temperature spectrum at the 
black hole cosmological radius rc ≈ 6 (Tc) with m = 0.3 

Figure 3 shows the relationship between the quintessence normalization parameter (𝑞) on the 
horizontal axis and three types of black hole temperatures on the vertical axis. The standard 
Hawking temperature without normalization (𝑇0) is shown as the blue line, at the black hole 
horizon 𝑟ℎ (𝑇𝐵𝐻) is shown as the yellow line, at the cosmological horizon 𝑟𝑐 (𝑇𝑐) is shown as the 
red line. The 𝑇0 line decreases linearly with 𝑞. This is in accordance with the expectation that 
increasing the quintessence contribution (larger 𝑞) will weaken the local gravitational effect, so 
that the Hawking temperature decreases. T0 can even be negative if not constrained. The 
temperature at the cosmological horizon (𝑇𝑐) also shows a linear decrease with 𝑞 and 
approaches negative at 𝑞 > 0.07 which is physically meaningless and indicates that the 
cosmological horizon cannot be defined properly for high 𝑞. This is consistent with the 
prediction that the quintessence field dominates on large scales and expands the cosmological 
horizon, thus decreasing its gravitational surface and temperature. Unlike the previous two 
temperatures, the temperature at the black hole horizon (TBH) shows a significant non-linear 
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increase. This increase occurs because the black hole horizon shrinks with increasing 𝑞, which 
causes its gravitational surface acceleration (𝜅) to increase and results in higher thermal 
radiation. This effect reflects the transition from local gravitational dominance to quintessence 
field dominance, which shrinks the horizon and increases local radiation. The exponential 
increase of 𝑇𝐵𝐻 at a certain value of 𝑞 also indicates that there is an upper limit on the parameter 
𝑞 for the system to remain physical. This shows that in this range, the effect of quintessence on 
deep horizons is very strong and can increase the temperature. 

 

Figure 4. Hawking temperature spectrum for variations in the black hole horizon 
radius rh with normalization (TBH) with m = 0.3 

The relationship between the Hawking temperature at the normalization black hole horizon 

(TBH) with the quintessence parameter (q) is shown in Figure 4. For small values of q (close to 

0), TBH increases very slowly at all values of rh. The quintessence contribution is still weak, and 

the system still closely resembles a regular Schwarzschild black hole. For larger values of rh, 

TBH temperature of the black hole remains relatively low for the same q. As q approaches the 

upper limit in this plot (about 0.25), TBH increases sharply. The rate of increase in temperature 

with q becomes more pronounced as the event horizon radius rh decreases, with rh ≈ 0.2 

showing the sharpest increase. This means that small black holes are more sensitive to the 

effects of dark energy. This plot illustrates a theoretical model in which the quintessence 

temperature of a black hole is calculated as a function of q and its horizon radius, which allows 

us to explore the properties of black holes in a modified theory of general relativity.  

From Figure 5, we observe that the Hawking temperature at the cosmological horizon (Tc) 

decreases by increasing the quintessence parameter (q), indicating an inverse relationship 

between Tc and q. Moreover, higher values of rc lead to lower values of Tc for a given q. As q 

increases from 0 to 1, Tc decreases linearly for a fixed rc. Higher values of rc lead to lower Tc for 

the same q. Physically, the decrease in 𝑇𝑐 with increasing 𝑞 reflects that the presence of 

quintessence field associated with dark energy forms contributes to "cooling" the cosmological 

horizon. The increase in 𝑞 indicates a greater dominance of dark energy, which results in a 

stronger acceleration of the universe's expansion and affects the structure of the horizon. In this 
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context, a larger cosmological horizon 𝑟𝑐 indicates a wider system, so its 𝑇𝑐 becomes lower. This 

phenomenon is analogous to the effect of the expansion of the universe which causes the 

cosmological background temperature to become smaller. Overall, the decrease in 𝑇𝑐 with 

respect to 𝑞 and 𝑟𝑐 illustrates the cooling effect of the universe due to the contribution of dark 

energy in the framework of space-time thermodynamics. 

 

Figure 5. Hawking temperature spectrum for variations in the cosmological horizon 
radius rc (Tc) with m = 0.3 

Furthermore, the Hawking temperature at the black hole horizon with normalization (TBH) and 

at the cosmological horizon (Tc) spectrum at mass (m) variation can be seen in Figure 5. It shows 

that 𝑇BH decreases significantly as 𝑚 increases. This observation is consistent with Hawking’s 

original formulation, in which the black hole temperature is inversely proportional to its mass, 

𝑇BH ∝ 1/𝑚 for a Schwarzschild black hole. Physically, this implies that smaller black holes are 

hotter, while larger black holes are cooler, a key thermodynamic feature of black hole 

evaporation. 

In our model, this classical behavior is preserved even in the presence of quintessence, as shown 

in the numerical results. However, it is important to note that the presence of quintessence 

modifies the geometry of spacetime through an additional term in the metric function. This 

modification affects the surface gravity (𝜅), which under standard conditions is proportional to 

1/𝑚. With quintessence, this relation may be altered depending on the state parameter (𝜔𝑞) and 

the normalization factor (𝑞), potentially leading to deviations from the Schwarzschild case. 

While our current study numerically captures how 𝑇BH varies with 𝑚 under the influence of 

quintessence, a detailed analytical derivation of the modified surface gravity 𝜅 and its impact 

on temperature is not addressed in the present work and will be explored in subsequent studies. 

Additionally, the behavior of 𝑇𝑐 is also depicted in Figure 6. Unlike 𝑇BH, 𝑇𝑐 remains nearly 

constant and very close to zero across the examined mass range. This suggests that the 

cosmological horizon temperature is largely insensitive to changes in the black hole mass and 
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consistently much lower than TBH, further emphasizing the thermal asymmetry between local 

(black hole) and large-scale (cosmological) horizons in the influence of quintessence. 

 

Figure 6. Graph of the Hawking temperature at the black hole horizon with normalization 
(TBH) and at the cosmological horizon (Tc) at mass (m) variation and q = 0.15 

Conclusion 

Represented by a quintessence, dark energy plays an important role in influencing Hawking 

radiation and the Schwarzschild black holes temperature. From the linear decrease in the 

standard Hawking temperature without normalization (T0) and the nonlinear decrease in the 

normalized black hole temperature at the black hole event horizon (TBH) indicate a direct 

relationship between dark energy and black hole dynamics. In this study, we investigated the 

variation of the normalization of quintessence parameter 𝑞 to examine the physical behaviour 

of the black hole solutions within the allowed parameter regime and our analysis does not aim 

to redefine or reinterpret normalization in the context of quantum theory. When q is small, 

quintessence only provides minor corrections to the Schwarzschild horizon and 

thermodynamics of the black hole. With increasing 𝑞, the Hawking temperature at the black 

hole horizon (rₕ) decreases, while simultaneously causing an increase in the temperature at the 

cosmological horizon (rc), reflecting the growing influence of dark energy on large-scale 

spacetime. Physically, the distribution of dark energy (quintessence) affects both horizons by 

weakening the local gravitational effects near the black hole while enhancing the cosmological 

effects at larger scales. Thus, quintessence affects not only individual black holes but also the 

entire structure of the universe. Moreover, the temperature quantities T0, TBH, and Tc are 

physically relevant because they are derived from the surface gravity at rₕ and rc, both of which 

are modified by the quintessence. This analysis provides thermodynamic insight into the 

structure of black holes' spacetime under the influence of dark energy. It supports the 

interpretation that Hawking radiation and horizon thermodynamics may offer a novel avenue 

for probing the nature of dark energy through gravitational phenomena. We chose 𝜔 = −2/3 in 

this study because it simplifies the analysis through a linear radial function, represents a 
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transitional regime between −1/3 < 𝜔 < −1, and is consistent with prior studies on black holes 

with quintessence.  In future work, we will explore a broader range of 𝜔 that would enhance 

the generality of the results (including phantom 𝜔 < −1). 
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