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 We propose the existence of a topological object, a weak gravitational 
knot, in the framework of an Abelian Chern-Simons action with a 
small positive cosmological constant in (2+1)-dimensional empty 
space-time. 
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Introduction 

It has been widely believed that topological objects cannot exist in linear theories. Topological 
theories are inherently non-linear [1]. How could a topological object, like a gravitational knot, 
exist in linear theory, such as an Abelian Chern-Simons theory? 

It is well known that the general theory of gravitation is identical to a gauge theory [2–6]. 
Maxwell’s theory of electromagnetism and Einstein’s theory of gravitation are identical, where 
the gauge potential and the field strength tensor in Maxwell’s theory (in general, a non-Abelian 
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gauge theory, such as Yang-Mills theory) are identical to the connection and the curvature in 
general relativity, respectively [2]. Both theories are gauge theories, where Maxwell’s theory 
is an Abelian U(1) gauge theory of internal space, and general relativity can be treated as the 
gauge theory of translation of (3+1)-dimensional (external) space-time [3]. The vierbein 
formalism of general relativity (Cartan gravity) makes general relativity similar to a gauge 
theory [4]. Nevertheless, general relativity and a gauge theory are not equivalent to (3+1)-
dimensional space-time. But they are precisely equivalent in (2+1)-dimensional space-time [4]. 

Roughly speaking, gravity theory in (2+1)-dimensional space-time is a simpler model than 
general relativity in (3+1)-dimensional space-time. Gravity theory in (2+1)-dimensional space-
time shares the important conceptual features of general relativity in (3+1)-dimensional space-
time while avoiding some computational difficulties. As a generally covariant theory of space-
time, (2+1)-dimensional gravity has the same conceptual foundation as realistic (3+1)-
dimensional general relativity [5]. 

With a few exceptions, (2+1)-dimensional solutions are physically quite different from those 
in 3+1 dimensions. The (2+1)-dimensional model is not very helpful for understanding the 
dynamics of realistic quantum gravity. However, the model has proven highly instructive for 
analyzing conceptual problems, e.g., the nature of time, the construction of states and 
observable, the role of topology, and topology change [5]. The dynamics is topology in (2+1)-
dimensional spacetime gravity [7]. The (2+1)-dimensional gravity theory could be interpreted 
as a Chern-Simons three form [4]. The Chern-Simons theory is a topological gauge theory in 
(2+1)-dimensional spacetime [7], where the Chern-Simons action precisely coincides with the 
(2+1)-dimensional space-time of the Einstein-Hilbert action [4, 6]. 

The Einstein-Hilbert action in (2+1)-dimensional space-time, without a cosmological constant, 
is equivalent to a gauge theory with gauge group ISO(2,1) and a pure Chern-Simons action [4]. 
If we include a cosmological constant in (2+1) general relativity, then Minkowski (flat) space-
time is replaced by space-time with a constant curvature: de Sitter or anti-de Sitter depending 
on the sign of a cosmological constant (plus for de Sitter and minus for anti-de Sitter), and 
gauge group ISO(2,1) is replaced by SO(3,1) or SO(2,2) [4]. 

Suppose the relation between general relativity and Chern-Simons gauge theory is valid at the 
quantum level. In that case, there is a close relationship between general relativity and knot 
theory, at least in (2+1)-dimensional space-time, since Chern-Simons gauge theory in (2+1)-
dimensional space-time is intimately connected with knot theory [4]. We consider the 
quantum level here to be related to the topological quantum condition, the discreteness. 

The formulation of a gravitational knot for a non-Abelian Chern-Simons action in (2+1)-
dimensional empty space-time has been proposed [4, 6–9]. In this article, we propose the 
existence of a gravitational knot in the weak-field limit in (2+1)-dimensional empty spacetime 
formulated as an Abelian Chern-Simons action with a small positive cosmological constant 
written using the Clebsch variables. To the best of our knowledge [1, 4, 6–16], the formulation 
of such weak gravitational knot has not been done yet. 

We assume that a topological structure in three-dimensional gravity is similar to that in 
Maxwell’s theory of vacuum space [1]. Analogous to the linearized Ricci curvature tensor in 
(3+1)-dimensional space-time, the linearized Ricci curvature tensor (with a small positive 
cosmological constant) in the case of the weak-field limit is assumed to be valid in (2+1)-
dimensional space-time. 
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In analogy to Maxwell’s theory of vacuum space, where the field strength tensor could consist 
of a set of subset fields [1, 17], complex scalar fields, we propose that the Ricci curvature tensor 
(the set of the solutions of Einstein field equations) could consist of a set of curvature 
components, complex scalar potentials. This curvature component set, such as subset fields, 
satisfies the non-trivial Hopf maps. This means that non-trivial Hopf maps can describe the 
properties of a set of curvature components. 

A set of curvature components is locally equal to the linearized Ricci curvature tensor, i.e. the 
linearized Ricci curvature tensor can be obtained by patching together a set of curvature 
components (except in a zero-measure set) but globally different. The difference is global 
instead of local since a set of curvature components obey the topological quantum condition, 
but the linearized Ricci curvature tensor does not. The linearized Ricci curvature tensor 
satisfies the linear Ricci theory, but a set of curvature components satisfies the non-linear Ricci 
theory. The linearized Ricci curvature tensor and a set of curvature components satisfy the 
linear Ricci theory in the case of a weak-field limit. This means that, in the case of a weak-field 
limit, the non-linear Ricci theory is reduced to the linear Ricci theory. 

This article is organized as follows. Section II briefly discusses the (3+1)-dimensional gravity 
in the case of sourceless and without a cosmological constant. In Section III, the (2+1)-
dimensional gravity in the case of sourceless, without and with a cosmological constant. 
Section IV identifies the relation between the Einstein-Hilbert and the Chern-Simons actions 
in (2+1)-dimensional space-time. Section V discusses linearized metric perturbations, scalar, 
and vector potentials. Section VI briefly discusses a set of curvature components and Hopf 
maps. Section VII discusses the Hopf invariant, Hopf index, and Chern-Simons action. Section 
VIII, we formulate the non-linear and linear Ricci theories using complex scalar potentials and 
vector potential in terms of the Clebsch variables. Section IX describes the relation between the 
gauge potential and the gauge fields. We formulate the gauge fields in terms of Clebsch 
variables. In Section X, we formulate the weak gravitational knot. In Section XI, a discussion 
and conclusion are given. 

(3+1) Gravity 

The Einstein field equations in (3+1)-dimensional space-time can be written as 

𝐺𝜇𝜈 +  Λ 𝑔𝜇𝜈    =  −8 𝜋 𝐺 𝑇𝜇𝜈                                     (1) 

where 

𝐺𝜇𝜈 =  𝑅𝜇𝜈 −  
1

2
  𝑔𝜇𝜈  𝑅                                               (2) 

𝐺𝜇𝜈 is Einstein tensor, 𝑅𝜇𝜈 is the Ricci curvature tensor, 𝑔𝜇𝜈is metric tensor, 𝑅 is the Ricci scalar 

curvature, Λ is a cosmological constant, 𝐺 is the gravitational coupling constant (the 
generalization to other dimensions of Newton’s constant) [8], 𝑇𝜇𝜈 is the energy-momentum 

tensor of matter. 

In this paper, what we mean by an empty space-time is a vacuum space-time, 𝑅𝜇𝜈 = 0, where 

there is no matter the source present, 𝑇𝜇𝜈  = 0, and no physical fields exist except the 

gravitational field [18]. This gravitational field does not disturb the emptiness, but other fields 
do [18]. Einstein assumed that in (3+1)-dimensional empty space-time, it constitutes his law of 
gravitation [18]. 



 Indonesian Physical Review. 8(1):238-252 

241 
 

In the absence of matter and without cosmological constant, the Einstein field equations (1), 
(2) read [9] 

𝐺𝜇𝜈 =  𝑅𝜇𝜈 - 
1

2
 𝑔𝜇𝜈  𝑅 = 0                                         (3) 

In general, the vanishing of 𝐺𝜇𝜈 hence of 𝑅𝜇𝜈 and 𝑅, does not imply that the Riemann 

curvature tensor is zero, i.e. the space-time need not be flat [9]. However, the situation is 
different in (2+1)-dimensional space-time. 

(2+1) Gravity 

In (2+1)-dimensional space-time manifold, M, Einstein-Hilbert action for gravity coupled to 
matter can be written as [5, 19] 

    𝐼𝐸𝐻 =  
1

16𝜋𝐺 
 ∫ 𝑑2+1

𝑀
𝑥 √−𝑔(𝑅 − 2Λ) + 𝐼𝑚𝑎𝑡𝑡𝑒𝑟                          (4) 

where 𝑔 = det(𝑔𝜇𝜈) is the determinant of the metric tensor matrix. 

      Equation of motion for the action (4) is [5, 19] 

𝑅𝜇𝜈 −  
1

2
 𝑔𝜇𝜈  𝑅 +  Λ 𝑔𝜇𝜈 =  −8𝜋𝐺 𝑇𝜇𝜈              (5) 

We see that the equation of motion (5) is the same as (1). Eq. (5) are generally covariant, i.e. 
they are invariant under the action of the group of diffeomorphisms (which can be viewed as 
a gauge group) of the spacetime [5]. A diffeomorphism is a smooth (continuously 
differentiable), reversible transformation between spaces or shapes that preserves their 
smooth structure. In contrast, an isometry [20] (distance-preserving mapping) is a special case 
of a diffeomorphism. 

In (2+1)-dimensional space-time, the relation between the Einstein tensor and the Riemann 
curvature tensor can be written as [9] 

𝐺𝜈
𝜇

= − 
1

4
 𝜀𝜇𝛼𝛽 𝜀𝜈𝛾𝛿  𝑅𝛼𝛽

𝛾𝛿
                                    (6) 

where 𝜀𝜇𝛼𝛽 is Levi-Civita symbols, 𝜇, 𝛼, 𝛽, denote spacetime coordinates. Eq. (6) may be 
inverted as [8] 

𝑅𝛽𝜈
𝛼𝜇

=  𝜀𝛼𝜇𝛾  𝜀𝛽𝜈𝛿  𝐺𝛾
𝛿                                                         (7) 

Eqs. (6) and (7) are the identities linking the Einstein tensor and the Riemann curvature tensor. 

Eq. (7) without a cosmological constant implies that if the Einstein tensor vanishes (due to the 
absence of matter), then the Riemann curvature tensor vanishes. In turn, the vanishing 
Riemann curvature tensor implies that the Ricci curvature tensor and the Ricci curvature 
scalar are equal to zero. So, the solution of eq. (7) is flat space-time. We call the theory trivial, 
i.e. it does not possess any propagating degrees of freedom [9]. 

For an empty space-time and a non-zero cosmological constant, eq. (5) can be replaced by 

𝐺𝜇𝜈 +  Λ 𝑔𝜇𝜈 = 0                                              (8) 

and by substituting eq. (8) into eq. (7), we obtain [9] 

𝑅𝛼𝜇𝛽𝜈 = − Λ ( 𝑔𝛼𝛽 𝑔𝜇𝜈 −  𝑔𝛼𝜈  𝑔𝛽𝜇)                  (9) 
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which shows that without sources, all spaces that solve (8) are of constant curvature: a closed 
de Sitter space for Λ > 0 or a hyperbolic anti-de Sitter space for Λ < 0 [9]. We consider that the 
constant curvature indicates that the geometry of space-time is locally homogeneous [4] and 
isotropic in the sense that curvature is uniform. 

Eq. (8) implies that the Ricci curvature tensor can be written as 

𝑅𝜇𝜈 =  
1

2
 𝑔𝜇𝜈  𝑅 −  Λ 𝑔𝜇𝜈                                                      (10) 

It means that the Ricci curvature tensor is not simply proportional to the metric tensor, 𝑔𝜇𝜈, 

scaled by a constant 𝑅, but also has an additional term involving the cosmological constant. 

 

Einstein-Hilbert Action as Chern-Simons Action 

Provide sufficient detail to allow the work to be reproduced. Methods already published 
should be indicated by a reference. Only relevant modifications should be described. 

The Einstein-Hilbert action without a cosmological constant 

The Einstein-Hilbert action without a cosmological constant in (2+1)-dimensional space-time 
manifold would be [4] 

𝐼𝐸𝐻 =  
1

2
 ∫ 𝜀𝜇𝜈𝜌𝑀

 𝜀𝑎𝑏𝑐  𝑒𝜇
𝑎  (𝜕𝜈 𝜔𝜌

𝑏𝑐 − 𝜕𝜌 𝜔𝜈
𝑏𝑐 + [𝜔𝜈, 𝜔𝜌]

𝑏𝑐
 ) 𝑑2+1𝑥                 (11) 

where 𝑒𝜇
𝑎  is a dreibein, 𝜔𝜌

𝑏𝑐  is a spin connection, 𝜀𝑎𝑏𝑐 is the Levi-Civita symbols in the internal 

(local Lorentz frame) space. If a dreibein and a spin connection are interpreted as gauge fields, 
it might conceivably to interpreted (11) as a Chern-Simons action [4]. 

From eq. (11), the Ricci curvature tensor can be written as 

𝑅𝜈𝜌
𝑏𝑐 =  𝜕𝜈𝜔𝜌

𝑏𝑐 − 𝜕𝜌𝜔𝜈
𝑏𝑐 + [𝜔𝜈 , 𝜔𝜌]𝑏𝑐                                   (12) 

Eq. (12) is a non-linear equation. The commutation relation in the third term of the right-hand 

side shows the nonlinearity, [𝜔𝜈 , 𝜔𝜌]𝑏𝑐. This commutation term represents the self-interaction 

of the spin connection. 

The Chern-Simons action without a cosmological constant 

The Chern-Simons action in (2+1)-dimensional spacetime manifold can be written as [4,8] 

  

                        𝐼𝐶𝑆 = ∫ 𝜀𝜇𝜈𝜌
𝑀

 𝑒𝜇𝑎  (𝜕𝜈𝜔𝜌
𝑎 −  𝜕𝜌𝜔𝜈

𝑎 + 𝜀𝑏𝑐
𝑎  𝜔𝜈

𝑏 𝜔𝜌
𝑐) 𝑑2+1𝑥          (13) 

We raise the a index in 𝜀𝑏𝑐
𝑎  to show explicitly the contraction of the index. The Chern-Simons 

action (13) precisely coincides with the Einstein-Hilbert action (11) [4]. 

 

 

The Einstein-Hilbert action with a cosmological constant 

The generalized Einstein-Hilbert action in (2+1)-dimensional space-time with a non-zero 
cosmological constant can be written as [4] 
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       𝐼𝐸𝐻 =  ∫ 𝜀𝜇𝜈𝜌
𝑀

 {𝜀𝜇𝑎(𝜕𝜈𝜔𝜌
𝑎 −  𝜕𝜌𝜔𝜈

𝑎) + 𝜀𝑎𝑏𝑐  𝑒𝜇
𝑎  𝜔𝜈

𝑏 𝜔𝜌
𝑐 +  

Λ 

3
 𝜀𝑎𝑏𝑐  𝑒𝜇

𝑎 𝑒𝜈
𝑏 𝑒𝜌

𝑐}    (14) 

The equations of motion (14) say that space-time is not flat but locally homogeneous, with the 
curvature proportional to a cosmological constant [4]. 

The connected covering space of such a spacetime is not a portion of Minkowski space but a 
portion of de Sitter or anti-de Sitter space. The spaces of de Sitter and anti-de Sitter have 
SO(3,1) and SO(2,2) for their symmetries, respectively. It is different from the flat space-time 
of Minkowski, which has its symmetry ISO(2,1) [4]. Thus, it is reasonable to guess that if the 
gravity theory without a cosmological constant in (2+1)-dimensional space-time is related to 
the gauge theory of ISO(2,1), then the gravity theory with a cosmological constant in (2+1)-
dimensional space-time will be related to gauge theory of SO(3,1) and SO(2,2) [4]. 

We see from eq. (14), the Ricci curvature tensor could be written as [6] 

𝑅𝜈𝜌
𝑎  = 𝜕𝜈𝜔𝜌

𝑎 −  𝜕𝜌𝜔𝜈
𝑎 +  𝜀𝑏𝑐

𝑎 𝜔𝜈
𝑏𝜔𝜌

𝑐 + 
Λ

3
 𝜀𝑏𝑐

𝑎  𝑒𝜈
𝑏 𝑒𝜌

𝑐                  (15) 

  

In terms of the spin connection, eq. (15) is a non-linear equation due to there exists the 
multiplication term of the spin connection in the third term of the right-hand side, 𝜔𝜈

𝑎, 𝜔𝜌
𝑎 such 

as in eq. (12). 

The weak-field limit and a small positive cosmological constant 

In the case of the weak-field limit of the gauge fields and a small positive cosmological 
constant, Λ > 0, |Λ| << 1, eq. (15) reduces to a linearized Ricci curvature tensor written below 

  𝑅𝜈𝜌
𝑎 =  𝜕𝜈𝜔𝜌

𝑎 −  𝜕𝜇𝜔𝜈
𝑎 +  

Λ

3
 𝜀𝑏𝑐

𝑎  𝑒𝜈
𝑏𝑒𝜌

𝑐 (16) 

In terms of the spin connection, eq. (16) is a linear equation. There is no self-interaction of the 
spin connection. Although, at first sight, eq. (16) looks like a non-linear equation, because a 
quadratic form exists (as a product of the dreibein components) in the third term of eq. (16). 
Here, the dreibein components can be viewed as the fixed fields, i.e., the fields that are 
considered given or fixed externally, parameters. They are not variables being solved for. The 
fixed dreibein fields, due to a cosmological constant, introduce a source term imposed on the 
curvature. 

The Chern-Simons action with a cosmological constant 

The generalized (non-Abelian) Chern-Simons action with a non-zero cosmological constant 
could be written as [4, 6] 

𝐼𝐶𝑆 =  ∫ 𝜀𝜇𝜈𝜌
𝑀

𝑒𝜇𝑎  {𝜕𝜈 𝜔𝜌
𝑎 −  𝜕𝜌𝜔𝜈

𝑎 +  𝜀𝑏𝑐
𝑎 (𝜔𝜈

𝑏 𝜔𝜌
𝑐 +

Λ

3
 𝑒𝜈

𝑏 𝑒𝜌
𝑐)} 𝑑2+1𝑥                 (17) 

From eq. (17), the Ricci curvature tensor can be written as 

𝑅𝜈𝜌
𝑎 =  𝜕𝜈𝜔𝜌

𝑎 − 𝜕𝜌 𝜔𝜈
𝑎 + 𝜀𝑏𝑐

𝑎 (𝜔𝜈
𝑏 𝜔𝜌

𝑐 +  
Λ

3
 𝑒𝜈

𝑏 𝑒𝜌
𝑐)                                                      (18) 

We see that eq. (18) is equivalent to eq. (15). 

Regarding the weak-field limit of the gauge fields and a small positive cosmological constant, 
eq. (18) reduces to a linearized Ricci curvature tensor written below 
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𝑅𝜈𝜌
𝑎 =  𝜕𝜈𝜔𝜌

𝑎 − 𝜕𝜌𝜔𝜈
𝑎 +  

Λ

3
 𝜀𝑏𝑐

𝑎  𝑒𝜈
𝑏 𝑒𝜌

𝑐                                                                                     (19) 

where 𝜀𝑏𝑐
𝑎  the Levi-Civita symbol has a role as the structure constants (the structure 

coefficients) [21]. Eq. (19) is a linear equation regarding the spin connection. The reason is 
analogous to eq. (16). 

The Abelian Chern-Simons action with a cosmological constant 

The Abelian Chern-Simons action with a small positive cosmological constant can be obtained 
from eq. (17) By replacing the Ricci curvature tensor (18) with a linearized Ricci curvature 
tensor (19), we have 

𝐼𝐶𝑆 = ∫ 𝜀𝜇𝜈𝜌
𝑀

 𝑒𝜇𝑎  (𝜕𝜈𝜔𝜌
𝑎 −  𝜕𝜌𝜔𝜈

𝑎 + 
Λ

3
 𝜀𝑏𝑐

𝑎  𝑒𝜈
𝑏 𝑒𝜌

𝑐) 𝑑2+1𝑥                     (20) 

We will use this Abelian Chern-Simons action (20) to formulate the gravitational knot. 

Linearized Metric Perturbations, Scalar and Vector Potentials 

The linearized (small) metric perturbations can be written as 

ℎ𝜇𝜈 =  𝑔𝜇𝜈 −  𝜂𝜇𝜈                                                                                      (21) 

where 𝜂𝜇𝜈 is the metric of Minkowski (flat) space-time. The small metric perturbations means 

that |ℎ𝜇𝜈| << 1 for all 𝜇 and 𝜈. 

In the language of a wave, the linearized metric perturbations can be written as [22] 

ℎ𝜇𝜈 =  𝜌𝜇𝜈  𝑒𝑖𝒌.𝒓                                                                                   (22) 

where 𝜌𝜇𝜈 is the amplitude as a function of space-time, 𝒌 is the wave vector, 𝒓 is the position 

vector, and 𝒌. 𝒓 is the phase, a function of space-time. In an empty space-time, the amplitude 
is constant. 

In the linearized gravity theory, the linearized metric perturbations take a role as “potentials” 
[22]. We consider the linearized metric perturbations analogous to a set of curvature 
components, the scalar potentials, which could be complex, written as [23] 

ℎ =  𝜌 𝑒𝑖𝑞 , ℎ∗ =  𝜌 𝑒−𝑖𝑞                                                                       (23) 

where 𝜌 is the amplitude, 𝑞 is the phase, ℎ∗ is the complex conjugate of ℎ, i is an imaginary 
number. Both the amplitude and the phase are the functions of space-time. 

The related (real) vector potential could be written as 

ℎ𝜇 = 𝑓 𝜕𝜇𝑞                                                                                                  (24) 

where the Greek index, 𝜇, denotes the spatial index, f is the amplitude function written below 

𝑓 =  −
1

{2𝜋(1+ 𝜌2)}
                                                                                                       (25) 

Here f and q are the Clebsch variables [24] or the Gaussian potentials [8, 25]. Both f and q are 
scalars.  

In the following, we will interpret the gauge potential in a gauge theory as the gauge fields 

(the dreibein and the spin connection) in general relativity. We will then reformulate the 

relation between the gauge potential and the gauge fields written using the Clebsch scalar 
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variables. First, it is necessary to show that a set of curvature components satisfies the non-

trivial Hopf maps. 

A Set of Curvature Components and Hopf Maps 

The properties of the complex scalar potentials could be described by the non-trivial Hopf 
maps written below 

ℎ(𝒓), ℎ∗(𝒓): 𝑆3 → 𝑆2                                                                                       (26) 

These non-trivial Hopf maps can be classified into homotopy classes labeled by the value of 
the corresponding Hopf indexes, integer numbers, and topological invariants [1, 17]. The other 
names of the topological invariants are the topological charge and the winding number (the 
degree of a continuous mapping, such as the Hopf maps). The topological charge is metric 
tensor-independent, it can be interpreted as energy [26]. 

The complex scalar potentials in the non-trivial Hopf maps (26) are time independent. 
Analogous to the time-independent complex scalar fields, this problem could be solved by 
interpreting some of the quantities that appear in Hopf’s theories as Cauchy’s initial time 
values [24]. We consider that the two-dimensional spheres, 𝑆2, as codomain in the Hopf maps, 
could be interpreted as two-dimensional spheres with constant curvature. We will interpret 
these two-dimensional spheres with constant curvature as de Sitter space. 

Hopf Invariant, Hopf Index, Chern-Simons Action 

The Hopf invariant, Η, can be expressed as [15, 27, 28] 

Η =  ∫ 𝜀𝜇𝜈𝜌
𝑆3  Ω𝜇 𝜕𝜈Ω𝜌 𝑑3𝑥                                                                         (27) 

where Ω𝜇 can be interpreted as a connection one-form, a gauge potential, 𝑑3𝑥 represents the 

volume element on 𝑆3. In hydrodynamics, this partial derivative of connection one-form, 
𝜕𝜈Ω𝜌 =  𝑊𝜈𝜌, can be interpreted as the vorticity. 

The Hopf invariant can be related to the Hopf index, ℋ, written explicitly as [1] 

Η = ℋ 𝛾2                                                                                                        (28) 

where 𝛾 is the total strength of the field [1]. 

The concept of the Hopf invariant arises naturally from the geometry of the Hopf maps. It 
measures the degree (number) of linking of the preimages on 𝑆3 mapped to a point on 𝑆2 
under the Hopf maps. The linking number tells us how often one of these loops wraps around 
the other. If the linking (integer) number is zero, there is no entanglement between two loops. 
These two loops can be separated or untangled without cutting. We could call these two 
separated loops the distant union of two unknots (the unknot is the knot) which is a perfectly 
fine link. This is because links do not need to be linked [29]. If the linking number is not zero, 
then there exists an entanglement in the Hopf maps, the (continuous) non-trivial maps. 

The Hopf invariant is identical to the circulation in hydrodynamics [25], where Ω and 𝑑Ω in 

the Hopf invariant are identical to the velocity field and the vorticity in hydrodynamics, 

respectively. Suppose we relate hydrodynamics (self-helicity) to a gauge theory. In that case, 

it can be interpreted naturally that the Hopf invariant has a deep relationship with the Chern-

Simons action (the Chern-Simons integral) [15]. The Hopf invariant is just the winding number 
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of Gauss mapping [15]. The Hopf invariant is an important topological invariant in describing 

the topological characteristics of the knot family. More precisely, the Hopf invariant or the 

Chern-Simons action is the total sum of all the linking and all the self-linking numbers of the 

knot family [15,16]. The linking and self-linking numbers by themselves have a topological 

structure. 

Non-Linear and Linear Ricci Theories 

Analogous to a non-linear field theory in Maxwell’s theory [1], the non-trivial Hopf maps (26) 
have a consequence that we could write a non-linear Ricci theory as 

𝑅𝜇𝜈 =  
√𝑠

2𝜋𝑖
 {

𝜕𝜇ℎ∗ 𝜕𝜈ℎ− 𝜕𝜈ℎ∗ 𝜕𝜇ℎ

(1+ ℎ∗ℎ)2 }                                                                  (29) 

where s is an action constant, introduced so that the nonlinear Ricci theory (written using the 
complex scalar potentials) will have suitable dimensions for the curvature. The nonlinearity of 
eq. (29) is shown by the ℎ∗ℎ term in the denominator. 

In the case of a weak-field limit, the complex scalar potentials are very small, |ℎ∗ℎ| << 1, so 
eq. (29) reduces to a linear Ricci theory as written below 

𝑅𝜇𝜈 =  
√𝑠

2𝜋𝑖
 (𝜕𝜇ℎ∗ 𝜕𝜈ℎ −  𝜕𝜈ℎ∗ 𝜕𝜇ℎ)                                                                  (30) 

If eq. (30) is written using the (real) vector potential (24), then we obtain 

𝑅𝜇𝜈 =  
√𝑠

2𝜋𝑖
  (𝜕𝜇ℎ𝜈 −  𝜕𝜈ℎ𝜇)                                                                                             (31) 

This linear Ricci theory (31) is equivalent to the linearized Ricci curvature tensor [30, 31] 

𝑅𝜇𝜈 =  𝜕𝛼Γ𝜇𝜈
𝛼 −  𝜕𝜈Γ𝜇𝛼

𝛼                                                                                                       (32) 

It means that the linearized Ricci curvature tensor (32) could be interpreted the same as the 
linear Ricci theory (31). 

By using the vector potential (24), the linear Ricci theory (31) could be written as 

𝑅𝜇𝜈 =  
√𝑠

2𝜋𝑖
 {𝜕𝜇(𝑓 𝜕𝜈𝑞) −  𝜕𝜈(𝑓 𝜕𝜇𝑞)}                                                        (33) 

This is the linear Ricci theory written regarding the Clebsch scalar variables. The vector 
potential written using the Clebsch variables (33) is equivalent to the Levi-Civita connection 
(the Christoffel symbols) in eq. (32). 

Gauge Potential and Gauge Fields 

In the dreibein formalism of general relativity, we have the gauge fields (the dreibein and the 
spin connection). These gauge fields could be viewed identically to the gauge potential. In this 
case, the gauge potential can be written as [4, 6, 8] 

𝐴𝜇 =  𝑒𝜇
𝑎 𝑃𝑎 + 𝜔𝜇

𝑎 𝐽𝑎                                                                                    (34) 

where 𝑒𝜇
𝑎  is a component of the vierbein (the translational part),  𝑒𝜇 

𝑎  𝑃𝑎 is the vierbein field or 

shortly the vierbein, 𝜔𝜇
𝑎 is a component of the spin connection (the rotational part), 𝜔𝜇

𝑎  𝐽𝑎  is 

the spin connection field or the spin connection, 𝑃𝑎 , 𝐽𝑎, are the generators of translation and 
rotation, respectively. 

Analogous to (24), we could write the gauge potential as 
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𝐴𝜇 = f 𝜕𝜇q                                                                                                                (35) 

By substituting eq. (35) into eq. (34), we obtain 

f  𝜕𝜇q = 𝑒𝜇
𝑎 𝑃𝑎 + 𝜔𝜇

𝑎 𝐽𝑎                                                                                                         (36) 

If we assume that the components of the vierbein and the spin connection could be written 
using the Clebsch variables, they could be written respectively, as 

𝑒𝜇
𝑎 =  𝑓𝑒 𝜕𝜇𝑞𝑒

𝑎                                                                                                        (37) 

and 

𝜔𝜇
𝑎 =  𝑓𝜔 𝜕𝜇𝑞𝜔

𝑎                                                                                                        (38) 

where 𝑓𝑒 , 𝑓𝜔, are the amplitude functions of the vierbein and the spin connection, respectively. 
Both of them relate to gravitational “strength” or scaling effects, i.e. they scale the 
contributions of 𝜕𝜇𝑞𝑒

𝑎 and 𝜕𝜇𝑞𝜔.
𝑎  𝑞𝑒

𝑎, 𝑞𝜔
𝑎 , are the phase of the vierbein and the spin connection, 

respectively. Their gradient encodes information about the direction or orientation of the 
gravitational field. 

By substituting eqs. (37), (38), into (36), the gauge potential becomes 

𝑓 𝜕𝜇q = 𝑓𝑒 𝜕𝜇𝑞𝑒
𝑎 𝑃𝑎 +  𝑓𝜔 𝜕𝜇𝑞𝜔

𝑎  𝐽𝑎                                                                    (39) 

where the amplitude functions of the vierbein and the spin connection are constant due to the 

amplitude in an empty space-time is constant. 

A Weak Gravitational Knot 

By substituting eqs. (37), (38), into eq. (20), and by assuming that 𝑓𝑒 , 𝑓𝜔, are constants, we obtain 
the Abelian Chern-Simons action in (2+1)-dimensional space-time as written below 

  𝐼𝐶𝑆 =  ∫ 𝜀𝜇𝜈𝜌 𝑓𝑒 𝑀
𝜕𝜇𝑞𝑒𝑎 {𝑓𝜔(𝜕𝜈𝜕𝜌 −  𝜕𝜌𝜕𝜈) 𝑞𝜔

𝑎 +  
Λ

3
  𝜀𝑏𝑐

𝑎  𝑓𝑒 𝜕𝜈𝑞𝑒
𝑏 𝑓𝑒 𝜕𝜌𝑞𝑒

𝑐} 𝑑2+1𝑥    (40) 

The Chern-Simons action (40), could be interpreted as a weak gravitational knot. The Levi-

Civita symbols have a role as structure constants that couple the interaction between the gauge 

fields. The amplitude functions, 𝑓𝑒 , 𝑓𝜔, have a role as scale factors. We see that the Chern-

Simons action (40) is identical to the Hopf invariant [27]. This weak gravitational knot is an 

integer number. That is what we mean by a set of curvature components obeying the 

topological quantum condition. 

Discussion and Conclusion 

It has been realized that topology's role has become increasingly important in recent days and 
the future of physics. But to understand topology is complicated enough because topology is 
inherently related to nonlinearity. It has been widely believed that topological objects cannot 
exist in linear theories, such as an Abelian Chern-Simons action in the topological quantum 
field theory. But this belief can no longer be maintained. The discovery of the electromagnetic 
knot in vacuum Maxwell’s theory more than thirty years ago has shown that the topological 
object could exist in the linear theory. 

We adopt the idea [1] of the electromagnetic knot and apply it to gravity. This is because 
electromagnetism and gravity are similar. The electromagnetic or Maxwell’s theory is a gauge 
theory and gravity theory (the general theory of relativity) could be treated as a gauge theory. 
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Maxwell’s theory is an Abelian U(1) local gauge theory of internal space and general relativity, 
a non-linear theory, is a gauge theory of translation in (3+1)-dimensional (external) space-time. 
The gauge potential and the field strength tensor in electromagnetism are identical to the 
connection and the curvature in gravity theory, respectively. 

In (2+1) empty space-time, the curvature can be nonzero due to a non-zero cosmological 
constant. This (constant) curvature causes the gravitational fields to interact with themselves, 

as shown by the term  
Λ

3
 𝜀𝑎𝑏𝑐  𝑒𝜇

𝑎 𝑒𝜈
𝑏 𝑒𝜌

𝑐 (14) and its equivalent form in a gauge theory (17), giving 

rise to non-trivial topological objects, such as gravitational knots. The gravitational field can 
be visualized as a string to form a closed loop, a knot. These knots are localized in space-time 
because they relate to the interaction between gravitational fields or curvature that occur 
locally. 

We propose that curvature, i.e., the Ricci theory, has a set of curvature components. We 
consider this set of curvature components analogous to the linearized (small) metric 
perturbations, i.e. a set of curvature components could consist of the scalar potentials. It is 
because the linearized metric perturbations take a role as potentials, i.e., the linearized metric 
perturbations are the scalar potentials. A set of curvature components could be complex; for 
example, in the case of the electromagnetic knot, a set of subset fields could consist of complex 
scalar fields. Consequently, the complex scalar potential could be interpreted equivalently as 
the complex scalar fields. In other words, a set of curvature components could be interpreted 
equivalently as the complex scalar fields. It means that, roughly speaking, the curved space-
time could be treated as complex fields. What does it imply? 

The scalar potentials, such as the scalar fields, could be described using wave language. Both 
could be denoted by the amplitude times the exponential of iq, where q is the phase, and i is 
the imaginary number. The related (real) vector potential can be written using the Clebsch 
(scalar) variables f and q (24). We chose the real part of the related vector potential because we 
still do not know the consequence of the imaginary part formulation in physics. 

The Clebsch variables are not uniquely defined, but they can make many choices. In this way, 
the vector potential can be understood simply. These Clebsch variables are related to any 
divergenceless vector field, i.e. the divergence of any vector field gives the zero result. 
Examples of a divergenceless vector field are the vorticity in hydrodynamics, i.e. 𝛁. 𝑾 = 0, so 
𝑾 =  𝛁 × 𝒗 where 𝒗 is the velocity field vector, and in electromagnetism 𝛁. 𝑩 = 0, 𝑩 =  𝛁 × 𝑨 
where 𝑩 is the magnetic field, 𝑨 is the potential. 

The condition 𝜵. 𝑩 = 0 implies that vorticity is solenoidal, meaning it is sourceless or has no 
sinks. The vorticity originates from the curl of the velocity field. This means that the” source” 
of vorticity is the rotational motion of the velocity field rather than a scalar charge such as in 
electromagnetism. We can observe the non-zero vorticity phenomenon in the rotational flows 
of fluids, e.g. a whirlpool. We see from eqs. (20), (40), the vorticity is identical to the curvature, 
and the velocity field is identical to the gauge fields (the dreibein). 

In the case of the weak-field limit in (2+1)-dimensional empty space-time with a small positive 
cosmological constant, a non-linear Ricci curvature tensor (15) is reduced to a linearized Ricci 
curvature tensor (16). This small constant curvature accommodates our model in the limit of 
the infinite radius where the space-time is isotropic. What we mean by a linearized Ricci 
curvature tensor is, in terms of the spin connection, the Ricci curvature tensor is linear. We see 
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that a linearized Ricci curvature tensor in a gauge theory (19) is equivalent to a linearized 
curvature tensor in gravity theory (16). 

The main difference between a non-Abelian and an Abelian gravity (a gauge theory) is that 

the curvature term, 𝜀𝑏𝑐
𝑎  𝜔𝜈

𝑏 𝜔𝜌
𝑐, in gravity (15) or a gauge theory (18) no longer exists in a 

linearized curvature in gravity (16) or a gauge theory (19). In the case of the weak-field limit, 
the multiplication between the weak fields gives a very small result that we can assume to be 
ignored. It means no interaction exists between the spin connections in an Abelian gravity or 
an Abelian gauge theory. An Abelian Chern-Simons action (20) is a linear equation for the spin 
connection. 

The dreibein formalism of general relativity makes general relativity similar to a gauge theory. 
For this reason, we need to reformulate the gauge potential related to the gauge (vector) fields, 
i.e. in terms of the dreibein and the spin connection, as written in eq. (34). Analogous to the 
vector potential (24), the gauge potential could be written using the Clebsch variables (35). The 
gauge potential is not a total derivative, otherwise, it would be a pure gauge [24]. A pure gauge 
in this context means the field configuration does not produce any observable curvature or 
field strength. Since the gauge potential is not a total derivative, it is not a pure gauge and 
represents a physical, non-trivial field configuration. 

Analogous to the gauge potential, we assume that the gauge fields could be written using the 
Clebsch variables (37), (38). So, the relation between the gauge potential and the gauge fields 
could be written using the Clebsch variables (39). We could interpret the first term on the right-
hand side (39), 𝑓𝑒 𝜕𝜇𝑞𝑒

𝑎 𝑃𝑎, as the rate of translation, 𝑓𝑒 being an amplitude (scaling) factor that 

scales this translation rate. The second term on the right-hand side (39), 𝑓𝜔 𝜕𝜇𝑞𝜔
𝑎 , shows the 

rate of rotation, 𝑓𝜔 being a scaling factor that scales this rotational rate. 

Expressing the gauge potential and the gauge fields in terms of the Clebsch variables simplifies 
the formulation. The Clebsch variables, by showing explicitly the amplitude function and the 
phase, enable the separation of the underlying physical dynamics (the amplitude function, the 
phase) and certain properties of the gauge potential and the gauge fields, such as topological 
structures. Separating the gauge potential and the gauge fields into their amplitude function 
and phase makes the topological features (related to non-zero vorticity) inherent in the gauge 
potential and the gauge fields more apparent. 

The problems in the higher dimension can often be more complex than those in the lower 
dimension. By mapping onto the lower dimensional space, such as in the non-trivial Hopf 
maps, the problem becomes simpler without losing the information about the non-trivial 
topological properties of space. If we relate the nontrivial Hopf maps to physics, we could 
interpret the Hopf maps to represent the properties of a set of curvature components consisting 
of complex scalar potentials. In the infinite radius, the value of the complex scalar potentials 
is weak. The complex scalar potentials have isotropic (well-defined) properties in the infinite 
radius. 

We show that a set of curvature components satisfies the non-trivial Hopf maps (26). We 
assume that the time-independent problems of a set of curvature components, such as the 
electromagnetic knot, could be solved by interpreting some of the quantities that appear in 
Hopf’s theories as Cauchy’s initial time values. 

There exists (one) dimensional reduction in the nontrivial Hopf maps. Physically, we could 
relate this dimensional reduction to the isotropic (well-defined) property of the complex scalar 
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potentials, the gauge potential, and the gauge fields. The isotropic (well-defined) property of 
the complex scalar potentials could be interpreted as an empty (a vacuum) space-time where 
spacetime is homogeneous (isotropic). A space-time without a source but with a small positive 
cosmological constant can be considered an empty space-time with a constant curvature (de 
Sitter space-time). 

The non-zero constant curvature resulting from a small positive cosmological constant (40) is 
reflected in the non-commutativity between 𝜕𝜈 and 𝜕𝜌. This non-zero curvature is linked to the 

non-trivial (which can not be smoothly or continuously deformed into trivial configurations, 
such as a point) topological configurations of the gauge fields. In particular, the non-zero 
vorticity term (𝜕𝜈 𝜕𝜌 −  𝜕𝜌𝜕𝜈)𝑞𝜔

𝑎 , can contribute to a topological invariant, such as the winding 

number (an integer number). These non-trivial configurations are supporting evidence for the 
existence of the weak gravitational knot. The weak gravitational knot is related to the presence 
of the local vortex in space-time. The gravitation field could be imagined as a line (a field line) 
[32]. The winding number counts how often this field line winds around. The winding number 
is related to the field configuration's energy. 

Theoretically, the empirical or the observational evidence to support the existence of the weak 
gravitational knot in (2+1)-dimensional empty space-time is guaranteed by the formal 
equivalence between the weak gravitational knot and the electromagnetic knot formulations 
for which the electromagnetic knot solutions had been known to exist [1, 11]. 

Experimentally, we could observe the existence of the weak gravitational knot by observing 
the gravitational wave (the ripples of space-time) as it passes through space-time influenced 
by the weak gravitational knot. The presence of topological structures, such as the weak 
gravitational knot, might influence the propagation of these ripples, detectable through their 
specific polarization modes. The weak gravitational knot could change the properties of the 
gravitational waves. These changes appear as additional or modified polarization modes 
(beyond the standard + and ×) in the detected gravitational waves. 

So far, we are concerned with the weak gravitational knot in (2+1)-dimensional empty space-
time with a small positive cosmological constant. This work could be extended to the case of 
the weak gravitational knot in (2+1)-dimensional empty space-time with a small negative 
cosmological constant (anti-de Sitter space-time). 

The topological property of the Newtonian knot in (2+1)-dimensional empty space-time with 
a small positive cosmological constant related to the weak gravitational field and a very slow 
motion compared to the velocity of light is discussed separately [33]. 
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