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 This study presents a preliminary numerical investigation of the two-
dimensional trajectory of a non-buoyant fluid parcel subjected to inertial 
oscillations and abrupt external forcing events. The simulations were 
implemented using Python, GNU Octave, R, Julia, and Fortran open-source 
scientific computing environments. By running 1,000 iterations in each 
environment, we evaluated the computational performance of these languages 
in tackling this idealized problem. The results, visualized through static plots 
and animation, validate the numerical model's ability to represent the 
fundamental physics governing fluid motion. Statistical analysis using the 
Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni correction 
revealed that Fortran exhibits significantly faster execution times than other 
environments. However, the choice of programming language should also 
consider factors such as coding expertise, library availability, and scalability 
requirements. This study focuses on the performance of scientific computing 
environments within each language rather than the languages themselves. The 
observed execution times should be interpreted in the context of the specific 
environments used, as they often leverage optimized libraries written in lower-
level languages. Despite the limitations of this work, such as the simplified 2D 
model and the use of a single hardware configuration, this study provides 
valuable insights into selecting appropriate computational tools. It contributes 
to educational resources for teaching idealized fluid dynamics models. Future 
studies could explore more complex scenarios, a more comprehensive range of 
programming environments, and the impact of different numerical schemes 
and physical parameterizations.  
 

Copyright © 2024 Authors. All rights reserved. 
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Introduction 

The trajectory of neutrally buoyant fluid parcels in oscillating flows is a fundamental problem 
in geophysical fluid dynamics (GFD), with implications for oceanic and atmospheric 
processes. Inertial oscillations, resulting from the Earth's rotation, significantly influence the 
behavior of these fluid parcels [1]. Understanding the trajectories of non-buoyant particles 
subjected to oscillating flows is crucial for predicting the transport and dispersion of tracers in 
the oceans and atmosphere [2]. 

Geophysical fluids are characterized by vast spatial scales, complex dynamics, and the 
influence of rotational effects [3–5]. The Coriolis force, arising from the Earth's rotation, poses 
challenges in modeling fluid motions accurately. Inertial oscillations cause fluid parcels to 
oscillate around their mean trajectory, affecting transport and mixing processes in geophysical 
systems. Analytical solutions for fluid parcel trajectories under inertial oscillations are often 
limited to simplified cases or require restrictive assumptions. Consequently, numerical 
simulations have become essential for exploring the dynamics of these systems [6–8], 
particularly in two-dimensional (2D) scenarios where vertical motions are neglected. These 
idealized 2D models provide a starting point for understanding the fundamental physics 
governing fluid parcel trajectories and inform the development of more advanced models. 

In this paper, we present a preliminary numerical investigation of the 2D trajectory of a non-
buoyant fluid parcel under inertial oscillations. Although the problem setup is based on a 
textbook example [28], we focus on the computational analysis and comparison of different 
scientific computing environments for implementing the numerical solution. We aim to 
provide insights into the selection and performance of computational tools for simulating such 
idealized scenarios, emphasizing educational value. 

We implement the simulation using open-source scientific computing environments in 
multiple programming languages: Python, GNU Octave, R, Julia, and Fortran. These 
environments are widely adopted in scientific computing due to their extensive library 
support and ease of use [9-11]. It is important to note that our comparison is not primarily 
focused on the programming languages themselves, but rather on the performance of the 
scientific computing environments within each language. This approach allows us to evaluate 
the suitability and efficiency of these environments for the specific problem at hand, 
considering factors such as library availability, ease of implementation, and computational 
performance [57, 58]. 

In this paper, we present a preliminary numerical investigation of the 2D trajectory of a non-
buoyant fluid parcel under inertial oscillations. Although the problem setup is based on a 
textbook example [28], our focus is on the computational analysis and comparison of different 
scientific computing environments for implementing the numerical solution. We aim to 
provide insights into the selection and performance of computational tools for simulating such 
idealized scenarios, emphasizing educational value. 

We implement the simulation using open-source scientific computing environments in 
multiple programming languages: Python, GNU Octave, R, Julia, and Fortran. These 
environments are widely adopted in scientific computing due to their extensive library 
support and ease of use [9-11]. It is important to note that our comparison is not primarily 
focused on the programming languages themselves, but rather on the performance of the 
scientific computing environments within each language. This approach allows us to evaluate 
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the suitability and efficiency of these environments for the specific problem at hand, 
considering factors such as library availability, ease of implementation, and computational 
performance [57, 58]. 

The choice of running the simulations for 1,000 iterations is based on a careful balance between 
statistical robustness and computational feasibility. While a larger number of iterations 
generally leads to more accurate and reliable results, it also increases the computational cost. 
We argue that 1,000 iterations provide a sufficiently large sample size for meaningful statistical 
analysis while maintaining a reasonable computational burden, especially considering the 
educational context of this study. This iteration count allows us to capture the essential 
dynamics of the system and demonstrate the performance differences between the scientific 
computing environments, which are key objectives of our work. Moreover, 1,000 iterations 
ensure that the simulation time remains manageable for students and researchers working 
with limited computational resources, making the study more accessible and reproducible in 
educational settings. 

We argue that a detailed accuracy assessment against analytical solutions or across 
implementations is not necessary for the scope and objectives of this study. We focus on the 
comparative performance analysis and educational value of implementing the numerical 
solution in different programming environments. The employed numerical schemes, such as 
the semi-implicit scheme and finite difference discretization, are well-established and 
validated in the literature [13, 14]. We rely on their inherent accuracy and consistent 
implementation across the environment. 

The objectives of this paper are threefold. First, we describe the numerical methods used to 
simulate the 2D trajectory of a non-buoyant fluid parcel under inertial oscillations. Second, we 
evaluate the computational performance of scientific computing environments in Python, 
GNU Octave, R, Julia, and Fortran in tackling this problem, offering insights for researchers 
and educators in the GFD community. Third, we contribute to the educational resources 
available for teaching and learning about idealized models in fluid dynamics. 
This study aims to address a gap in literature by analyzing the numerical simulation of this 
idealized problem across multiple scientific computing environments, emphasizing 
performance evaluation and educational value. The insights gained will guide the selection of 
computational tools and support teaching and understanding fundamental concepts in GFD. 
While the choice of programming environment depends on various factors, our findings serve 
as a reference point for researchers and educators. 

Theory and Calculation 

To investigate the motion of a fluid parcel influenced by inertial oscillations in two 
dimensions, we start with the Navier-Stokes equations, which describe the conservation of 
momentum in fluid dynamics. The Navier-Stokes equations account for external forces, 
pressure gradients, and viscous forces within the fluid [17, 18]: 

 

 
𝜌(𝜕𝑡  𝒖 + 𝒖 ∙ ∇𝒖) = −∇𝑝 + 𝜇∇2 𝒖 + 𝒇 

 
Where, 𝜌 is the fluid density, 𝒖 ≡ (𝒖, 𝒗) is the fluid velocity vector with 
components 𝑢 and 𝑣 in the 𝑥 and 𝑦 directions, 𝑝 is the pressure, μ is the dynamic viscosity, 
and 𝒇 represents body forces per unit volume. In 2D flow, the Navier-Stokes equations can 

(1) 
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be separated into two components, one for momentum in the x-direction and one for the y-
direction: 
 

𝜌(𝜕𝑡𝑢 + 𝑢 𝜕𝑥𝑢 + 𝑣 𝜕𝑦𝑢) = −  𝜕𝑥𝑝 + 𝜇(𝜕𝑥𝑥
2 𝑢 + 𝜕𝑦𝑦

2 𝑢) + 𝑓𝑥⬚
 

(2)      

𝜌(𝜕𝑡𝑣 + 𝑢 𝜕𝑥𝑣 + 𝑣 𝜕𝑦𝑣) = −  𝜕𝑦𝑝 + 𝜇(𝜕𝑥𝑥
2 𝑣 + 𝜕𝑦𝑦

2 𝑣) + 𝑓𝑦 

 
We make several assumptions to simplify the Navier-Stokes equations for practical 
applications in geophysical fluid dynamics [3]. The fluid is treated as a Newtonian fluid with 
constant viscosity, and the flow is assumed incompressible. We apply the continuum 
assumption, treating the fluid as a continuous medium, and consider the fluid properties to 
be isotropic. The no-slip boundary condition is imposed at solid boundaries, and external 
forces other than body forces are neglected unless expressly stated. 
 
Focusing on 2D inertial oscillations, we further assume that the flow is predominantly 
horizontal (𝑤 = 0) with no vertical gradients (𝜕𝑧(. ) terms are zero). This assumption suits 
scenarios where flow dynamics are confined to a thin layer, such as near the ocean surface or 
in the atmosphere away from significant topographical influences [19–22]. We consider 
environments where pressure gradient forces are negligible compared to the Coriolis and 
external forcing terms, which may occur in conditions with strong rotational effects or 
relatively uniform pressure fields. 
 
The external forcings influencing the flow dynamics are defined as: 

𝑓𝑥 = 𝜕𝑡𝑢𝑓 

(3) 
𝑓𝑦 = 𝜕𝑡𝑣𝑓 

, where 𝑢𝑓 and 𝑣𝑓 represent uniform external forcings in space, such as wind stress or other 

steady influences. This assumption allows us to focus on the effect of external forcings 
without the complexities introduced by spatial variability. 

     
In our simplified model, we neglect viscosity due to its minimal impact compared to inertial 
terms and assume irrotational flow, simplifying the momentum equations. The Navier-Stokes 
equations then reduce primarily to expressions influenced by inertial effects and the Coriolis 
force, introduced through the Coriolis parameter 𝒇, twice the angular velocity of Earth's 
rotation [3] 

 
𝜕𝑡𝑢 =  −𝑓 𝑣 + 𝑓𝑥 

(4) 
𝜕𝑡𝑣 = − 𝑓 𝑢 +  𝑓𝑦 

 
These equations govern the inertial oscillations in a rotating reference frame, simplified to 
highlight the oscillatory behavior of fluid parcels. We focus on predicting the pathway of a 
non-buoyant fluid parcel, which further simplifies our assumptions by neglecting buoyancy 
effects [3]. The pathway of these fluid parcels is given by: 
 

𝑥̇ =  𝑈0 + 𝑢 
(5) 
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𝑦̇ =  𝑉0 + 𝑣 
 

where 𝑈0 and 𝑉0 represent the ambient uniform flow and 𝑢 and 𝑣 are the velocity 
perturbations due to inertial oscillations. 
 
While this model is highly simplified, it provides a valuable framework for understanding 
and predicting the movement of non-buoyant fluid parcels under specific geophysical 
conditions. A rigorous derivation would involve linearizing the Navier-Stokes equations, 
possibly introducing adjustments for external forcing terms, and considering geostrophic 
balance for large-scale geophysical flows. However, the current formulation captures the 
essential physics of inertial oscillations and is a valuable educational tool for exploring fluid 
parcel trajectories in idealized scenarios. 
 
It is important to note that the assumptions made in this simplified model, such as neglecting 
viscosity and assuming irrotational flow, are not always valid in real-world geophysical 
flows. More complex models incorporating additional physical factors and spatial variability 
may be necessary for accurate predictions in certain situations. Nevertheless, this idealized 
model provides a solid foundation for understanding the fundamental dynamics of inertial 
oscillations and serves as a steppingstone towards more sophisticated numerical simulations 
in geophysical fluid dynamics. 

     Experimental Method 

In this study, we employ two numerical techniques to predict the trajectory of non-buoyant 
fluid parcels in a rotating fluid system under the influence of inertial oscillations: the semi-
implicit approach and the local rotation method. These methods offer distinct perspectives 
and computational strategies for modeling the Coriolis force and other relevant factors. 
 
The semi-implicit approach utilizes the following numerical scheme to predict the fluid parcel 
trajectory, as described in equation 4: 
 

𝑢𝑛+1 =  
(1 −  𝛽)𝑢𝑛 + 𝛼𝑣𝑛

1 +  𝛽
 

(6) 

𝑣𝑛+1 =
(1 −  𝛽)𝑣𝑛  −  𝛼𝑢𝑛

1 + 𝛽
 

 
where 𝑢𝑛 and 𝑣𝑛 are the velocities at the current time step 𝑛, 𝑢𝑛+1 and  𝑣𝑛+1 are the velocities 
at the next time step  𝑛 + 1, and the parameters  𝛼 and 𝛽 are defined as 𝛼 =  ∆𝑡 𝑓 and 𝛽 = 𝛼/4. 
This semi-implicit scheme efficiently integrates the inertial oscillation equations over time, 
providing accurate predictions of the fluid parcel's velocity components (𝑢, 𝑣). To predict the 
x and y coordinates of a non-buoyant fluid parcel, we discretize the kinematic equation 
(equation 5) using finite differences: 
 

∆𝑥 =
𝛼𝑣𝑛

1 + 𝛽
∆𝑡 

(7) 
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∆𝑦 = −
𝛼𝑢𝑛

1 + 𝛽
∆𝑡 

 
The local rotation method simulates the Coriolis force using a velocity vector rotation: 

𝑢𝑛+1 = cos(𝜃)𝑢𝑛 + sin(𝜃)𝑢𝑛 
(8) 

𝑣𝑛+1 = cos(𝜃)𝑣𝑛 − sin(𝜃)𝑢𝑛 
 
where 𝜃 is determined based on the time step ∆t and the Coriolis parameter 𝑓, given by 𝜃 =

2 sin−1(
Δ𝑡

2
 𝑓). This method effectively captures the Coriolis effect by rotating the velocity 

components, aiding in predicting the trajectory of fluid parcels in a rotating system. By 
incorporating the finite difference approximation to equation 5, we obtain: 
 

∆𝑥 = (cos(𝜃) − 1) 𝑢𝑛∆𝑡 + sin(𝜃)𝑣𝑛∆𝑡 
(9) 

∆𝑦 = cos(𝜃)𝑣𝑛∆𝑡 − (sin(𝜃)+1)𝑢𝑛∆𝑡 
 
In our simulation, we model the ambient flow as a uniform northeastward flow with values of 
𝑈0 = 5 cm/s and 𝑉0 = 5 cm/s. The total simulation time is 6 days with ∆t = 4320 seconds 
(approximately 1.2 days). Three abrupt events change the relative flow speed and direction. 
(Δ𝑢 𝑓, Δ𝑣 𝑓), as explained in Table 1. 

 
Table 1. Velocity disturbance parameters 

 

time (days) ∆𝒖𝒇 (cm / s) ∆𝒗𝒇 (cm / s) 

1 10 0 

2 10 0 

4 0 10 

 

We implement these numerical schemes using various open-source computing environments 
widely used in earth science and geophysical fluid dynamics. Initially, we apply the schemes 
using Fortran, a language with a long history and extensive use in solving such problems [23–
26]. Fortran remains a staple in general circulation models (GCMs) [27], and the 1995 version 
has been pivotal in many classic problem-solving scenarios within this domain [28, 29]. 

We also implement the solutions in Python, leveraging the NumPy library [30]. Python has 
gained prominence in scientific computing due to its versatility and extensive libraries, 
making it a popular choice for numerical simulations and statistical computations in earth 
sciences [31–35]. GNU Octave, an open-source alternative to MATLAB®, is explored as well, 
offering a cost-effective solution with a syntax familiar to MATLAB® users. This makes it an 
appealing option for GFD modelers and researchers interested in numerical computations 
[36–38]. 

Additionally, we investigate Julia, a computing environment gaining traction among GFD 
modelers due to its ability to match Fortran's speed while maintaining Python's ease of use. 
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Many researchers are considering transitioning from Fortran to Julia for ocean models, 
attracted by this combination of performance and user-friendliness [37, 39–43]. Lastly, we 
conduct numerical calculations in R, a popular choice within the atmospheric and oceanic 
sciences communities [44–47] due to its data analysis and visualization strengths. 

The resulting simulation data is preserved in a structured format as a text file, ensuring 
accessibility and easy manipulation for further analysis and visualization. For visualization, 
we utilize the Matplotlib library [48] within the Python environment, generating static plots 
in Portable Network Graphics (.png) format and animations in Graphics Interchange Format 
(.gif). These widely supported formats ensure the accessibility and usability of the visualized 
data across different systems and applications. 

To rigorously evaluate and compare the execution times across diverse programming 
languages, we employ Python code to execute each numerical solver 1,000 times, ensuring 
robust statistical sampling. Crucial metrics like execution time, return codes, standard output, 
and errors are captured using the Subprocess library. The resulting dataset is structured into 
a Pandas DataFrame [49] and exported to comma-separated values (.csv) for analysis. 

 

For statistical comparison, we applied the Kruskal-Wallis test [50], a non-parametric method 
suitable for comparing multiple independent groups [51]. The Kruskal-Wallis test evaluates 
the null hypothesis that the medians of all groups are equal, indicating no significant 
difference in performance among programming languages. This test produces a test statistic 
H along with a p-value: 

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑗
2

𝑛𝑗

𝑘

𝑗=1

− 3(N + 1)   

In this case, N is the total number of observations, k is the number of groups, 𝑛𝑗 is the number 

of observations in the jth group, and 𝑅𝑗
  is the sum of ranks for the jth group. The degrees of 

freedom for the Kruskal-Wallis test is df = k − 1. 

If the p-value from the Kruskal-Wallis test was below a pre-defined significance level 𝛼 =
0.05, we proceeded with Dunn’s post-hoc test [52]. Dunn’s test is used for pairwise 
comparisons between groups to identify which groups exhibit statistically significant 
differences in performance [53]. 

Dunn’s test statistic for pairwise comparisons between groups i and j is given by: 

𝑍𝑖𝑗 =
|𝑅𝑖−𝑅𝑗| − (𝑁(𝑁 + 1)) ∕ 12

√𝑁(𝑁 + 1)(𝑁 + 2) ∕ 12
 

The critical value for Dunn’s test was obtained using the Bonferroni adjustment, where the 
significance level α was divided by the number of pairwise comparisons m to control for 
multiple testing: 

𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝛼

𝑚
 

Pairwise comparisons with |𝑍𝑖𝑗|exceeding the adjusted critical value indicate statistically 

significant differences between the corresponding groups. We performed these calculations 
automatically using the statistics module in the SciPy [54] and the scikit-posthoc [55] libraries 

(11) 

(10) 

(12) 
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in the Python computing environment. This rigorous statistical approach ensured reliable 
insights into the computational performance of multiple computing environments for 
simulating a 2D fluid parcel trajectory over 1,000 iterations. 

While the numerical schemes employed in this study are inspired by the work of Kämpf [28], 
we have adapted and expanded upon the original implementation to suit the specific 
objectives of our research. The primary focus of our study is to compare the performance of 
different programming languages and computing environments in simulating the trajectory 
of non-buoyant fluid parcels under inertial oscillations rather than to introduce novel 
numerical methods or to conduct a comprehensive accuracy assessment. 

We argue that a detailed comparison of the simulation results against analytical solutions or 
across different implementations is not strictly necessary for the scope and goals of this study. 
The semi-implicit scheme and finite difference discretizations used in our simulations are 
well-established numerical methods that have been extensively validated and applied in 
geophysical fluid dynamics [63, 64]. These methods have provided accurate and reliable 
results for various problems, including the simulation of inertial oscillations [65, 66]. 

Moreover, the primary objective of this study is to evaluate the computational performance 
and educational value of implementing the numerical solution in different programming 
languages and environments. By focusing on the relative performance differences between 
the implementations rather than on absolute accuracy, we can gain valuable insights into the 
suitability and efficiency of each programming language for this specific problem. 

It is important to acknowledge that this study's numerical schemes and model setup are 
simplified representations of the complex dynamics governing fluid parcel trajectories in real-
world geophysical flows. The assumptions made, such as neglecting vertical motion and 
assuming a uniform ambient flow, limit the direct applicability of the results to more realistic 
scenarios. However, these simplifications are intentional and create an accessible and easily 
understood educational example highlighting the key concepts and challenges of simulating 
inertial oscillations. 

In summary, our experimental methodology builds upon the foundation laid by Kämpf [28] 
but adapts and extends the original implementation to align with the specific goals of our 
study. By focusing on the comparative performance of different programming languages and 
environments rather than on comprehensive accuracy assessments, we can provide valuable 
insights into the computational aspects of simulating fluid parcel trajectories under inertial 
oscillations while maintaining a strong emphasis on educational value and accessibility. 

Result and Discussion 

Simulations were conducted to model the trajectory of a non-buoyant fluid parcel under the 
combined influence of inertial oscillations induced by the Earth's rotation, uniform ambient 
northeasterly flow over six days, and abrupt disturbance events on days one, two, and four. 
The resulting trajectories, plotted against time in Figures 1a and 1b, exhibit oscillatory behavior 
with increasing amplitude due to Coriolis effects. The slight path deviations observed can be 
attributed to differences in numerical precision across the various programming 
environments. 
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(a) 

 

(b) 

Figure 1. Temporal evolution of a non-buoyant fluid parcel undergoing inertial oscillation and abrupt 
forcing events in (a) x and (b) y directions. 

Figure 2 reveals a spiraling cyclical trajectory forming expanding loops consistent with the 
expected inertial oscillation pattern. The triangle markers represent the discretization points 
along the fluid parcel trajectory, effectively indicating the temporal evolution of the parcel's 
position. The distinct perturbations evident in the trajectory are likely caused by simulated 
disturbance events, which have the potential to amplify or dampen the oscillations and 
significantly impact parcel transport and dispersion. While we previously suggested that the 
increasing oscillation amplitudes might be due to numerical precision, this claim requires 
further investigation through simulations with varying time step sizes. Without such analysis, 
we refrain from attributing the amplitude growth to any specific factor and acknowledge the 
need for additional studies to draw definitive conclusions. 

In this idealized scenario, the observed trajectory patterns validate the numerical models' 
ability to represent the fundamental rotational dynamics governing fluid motion. Although 
implementation differences across programming environments were minor in this case, they 
highlight the importance of numerical accuracy and algorithm design for faithfully 
representing intricate fluid behavior, which could be amplified under more complex 
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conditions. The consistency of the results across different environments reinforces the 
robustness of the underlying numerical methods and their suitability for educational 
purposes. 

 

 

Figure 2. The trajectory of a fluid element is propelled within an ambient flow and undergoes inertial 
oscillation. 

Figure 3 examines the execution times of various computing environments for simulating the 
trajectory of a fluid parcel under inertial oscillations in a 2D geophysical fluid system. Based 
on 1,000 simulations in each environment (Fortran, Python, Julia, GNU Octave, and R), Fortran 
is the leader in speed and consistency. The boxplots and statistical data support this 
observation, with Fortran exhibiting the lowest mean execution time of 0.01 seconds, closely 
aligned with its median of 0.01 seconds. Furthermore, Fortran demonstrates an exceptionally 
low standard deviation of 0.001 seconds, indicating remarkable consistency in performance. 

In contrast, Python, R, Julia, and GNU Octave display more significant variability in execution 
times, as evidenced by their more extensive interquartile ranges (IQRs) and the presence of 
outliers. Among these environments, Python delivers a median execution time of 0.47 seconds, 
faster than R (1.01 seconds) and GNU Octave (0.52 seconds). Additionally, Python boasts a 
relatively small IQR of 0.064 seconds. However, Julia lags considerably with a median 
execution time of 3.8 seconds and a larger IQR of 1.14 seconds, indicating that half of the 
simulations in Julia took between 3.12 and 4.26 seconds to complete. 

The standard deviations substantiate the variability in execution times across the interpreted 
languages. Julia exhibits the most significant standard deviation of 0.593 seconds, followed by 
GNU Octave (0.090 seconds) and Python (0.046 seconds). The presence of outliers in Julia (one 
at 6.86 seconds) and Octave (one at 1.69 seconds) reinforces this observation. 



 Indonesian Physical Review. 7(3): 451-468 

461 
 

It is important to note that our comparison focuses on the performance of scientific computing 
environments within each programming language rather than the languages in isolation. 
While pure Julia has been shown to outperform pure Python in certain benchmarks, our study 
utilizes the scientific computing ecosystems available in each language, such as SciPy in 
Python and the Julia programming language itself. These ecosystems often leverage optimized 
libraries written in lower-level languages like C, which can significantly impact performance. 
Therefore, the observed execution times should be interpreted in the context of the specific 
scientific computing environments used, rather than as a direct comparison of the languages' 
inherent speeds. 

 

Figure 3. Box plots comparing the execution times of simulating the 2D trajectory of a non-buoyant 
fluid parcel under inertial oscillations using different open-source programming languages (Fortran, 

Python, Julia, GNU Octave, and R) over 1,000 iterations. 

 

Regarding the statistical analysis, we reported p-values as zeros based on the results 
obtained from the Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni 
correction. The Kruskal-Wallis test yielded a statistically significant result (p-value = 
0.000, test statistic = 4577.973), indicating that at least one environment exhibits a 
median execution time significantly different from the others. Dunn's post-hoc test 
revealed that Fortran's execution times were statistically different from all other 
environments (Julia, Octave, Python, and R) at a significance level of 𝛼 = 0.05 (all p-
values were 0.000). Furthermore, pairwise comparisons among the interpreted 
languages showed statistically significant differences in their median execution times 
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(all p-values were 0.000) (Fig. 4).

 

Figure 4. Box plots comparing the execution times of simulating the 2D trajectory of a non-buoyant fluid 
parcel under inertial oscillations using different open-source programming languages (Fortran, Python, 
Julia, GNU Octave, and R) over 1,000 iterations. 

 

We acknowledge the importance of verifying the accuracy of these calculations and ensuring 
the appropriate use of statistical tests. In the revised manuscript, we provide a more detailed 
description of the statistical methods employed and their assumptions, as well as discuss the 
limitations of our analysis given the relatively small sample size. We emphasize the need for 
caution in interpreting the results, as they may not generalize to a wider range of scenarios or 
programming implementations. 

It is crucial to recognize that our study was conducted on a single machine: a Fedora Linux 39 
(Budgie) x86_64 system with a 20LB0021US ThinkPad P52s laptop equipped with an Intel i7-
8550U (8) @4.000GHz CPU. This hardware limitation may impact the generalizability of our 
results, as performance characteristics could vary across different systems and architectures. 
Future studies could explore the performance of these programming environments on a wider 
range of hardware configurations to provide a more comprehensive understanding of their 
behavior. 

Conclusion 

The numerical simulation of the trajectory of a non-buoyant fluid parcel under inertial 
oscillation in a two-dimensional geophysical fluid system provides valuable insights into the 
fundamental physics governing fluid parcel transport and dispersion. By leveraging open-
source scientific computing environments in Python, GNU Octave, R, Julia, and Fortran, this 
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study contributes to the reproducibility and transparency of scientific research and facilitates 
collaborative knowledge sharing within the geophysical fluid dynamics community. 

The evaluation of computational performance across multiple programming environments 
revealed Fortran as the most efficient choice for simulating this idealized scenario. Statistical 
analysis, including the Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni 
correction, confirmed that Fortran exhibited significantly faster execution times compared to 
the other environments. However, the selection of an appropriate programming language 
should also consider factors such as coding expertise, availability of specialized libraries, and 
scalability requirements. 

It is crucial to recognize that our study focused on the performance of scientific computing 
environments within each language, rather than the languages in isolation. The observed 
execution times should be interpreted in the context of the specific environments used, as they 
often leverage optimized libraries written in lower-level languages. Therefore, the 
performance differences cannot be solely attributed to the inherent characteristics of the 
programming languages themselves. 

While this study provides valuable insights into the performance characteristics of different 
scientific computing environments, it is important to acknowledge its limitations. The 
idealized nature of the problem setup, with simplified assumptions such as two-dimensional 
flow and uniform ambient conditions, may not fully capture the complexities of real-world 
geophysical fluid dynamics. Additionally, the focus on a single test case and the use of a single 
hardware configuration (a Fedora Linux 39 system with an Intel i7-8550U CPU) may limit the 
generalizability of the results. 

Future studies could explore more complex scenarios, incorporate additional physical factors 
and spatial variability, and investigate the performance impact of different numerical schemes, 
grid resolutions, and physical parameterizations. Expanding the analysis to a wider range of 
programming environments and hardware configurations would provide a more 
comprehensive understanding of the performance landscape. 

Despite these limitations, the present study serves as a valuable educational resource, 
introducing students and researchers to the process of implementing and comparing 
numerical simulations across multiple programming environments. By providing hands-on 
experience with a tractable problem, this work promotes a deeper understanding of the 
interplay between physical models, numerical methods, and computational tools in 
geophysical fluid dynamics. 

In summary, this study contributes to the growing body of knowledge in geophysical fluid 
dynamics education and computational performance analysis. The insights gained can guide 
the selection of appropriate computational tools and inform future educational initiatives. 
While the choice of programming environment depends on various factors, our findings serve 
as a reference point for researchers and educators in the field. Further investigations and 
discussions on the optimal use of computational tools in geophysical fluid dynamics research 
and education are encouraged, considering the limitations and potential extensions of this 
preliminary study. 
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