
Indonesian Physical Review
Volume 07 Issue 03, September 2024
P-ISSN: 2615-1278, E-ISSN: 2614-7904

451

Comparing scientific computing environments for simulating
2D non-buoyant fluid parcel trajectory under inertial
oscillation: A preliminary educational study

Sandy H. S. Herho 1*, Iwan P. Anwar 2, Katarina E. P. Herho 3, Candrasa S. Dharma4, Dasapta
E. Irawan5

1Department of Earth and Planetary Sciences, University of California, CA, USA.
2Oceanography Research Group, Bandung Institute of Technology, West Java, Indonesia.
3Department of Geological Engineering, Trisakti University, West Jakarta, DKI Jakarta, Indonesia.
 4Naval Hydrographic and Oceanographic Center (Pushidrosal), Indonesian Navy (TNI AL), DKI Jakarta,
Indonesia.
5Applied Geology Research Group, Bandung Institute of Technology, West Java, Indonesia.

Corresponding Authors E-mail: sandy.herho@email.ucr.edu

Article Info Abstract
Article info:
Received: 30-04-2024
Revised: 18-07-2024
Accepted: 13-08-2024

Keywords:

Fluid parcel trajectories;
Geophysical fluid
dynamics; Inertial
oscillations; Idealized
models; Open-source
programming languages

How To Cite:

S. H. S. Herho, I. P.
Anwar, K. E. P. Herho, C.
S. Dharma, D. E. Irawan,
“Comparing scientific
computing environments
for simulating 2D non-
buoyant fluid parcel
trajectory under inertial
oscillation: A preliminary
educational study”,
Indonesian Physical
Review, vol. 7, no. 3, p
451-468, 2024.

DOI:

https://doi.org/10.29303/ip
r.v7i3.335

 This study presents a preliminary numerical investigation of the two-
dimensional trajectory of a non-buoyant fluid parcel subjected to inertial
oscillations and abrupt external forcing events. The simulations were
implemented using Python, GNU Octave, R, Julia, and Fortran open-source
scientific computing environments. By running 1,000 iterations in each
environment, we evaluated the computational performance of these languages
in tackling this idealized problem. The results, visualized through static plots
and animation, validate the numerical model's ability to represent the
fundamental physics governing fluid motion. Statistical analysis using the
Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni correction
revealed that Fortran exhibits significantly faster execution times than other
environments. However, the choice of programming language should also
consider factors such as coding expertise, library availability, and scalability
requirements. This study focuses on the performance of scientific computing
environments within each language rather than the languages themselves. The
observed execution times should be interpreted in the context of the specific
environments used, as they often leverage optimized libraries written in lower-
level languages. Despite the limitations of this work, such as the simplified 2D
model and the use of a single hardware configuration, this study provides
valuable insights into selecting appropriate computational tools. It contributes
to educational resources for teaching idealized fluid dynamics models. Future
studies could explore more complex scenarios, a more comprehensive range of
programming environments, and the impact of different numerical schemes
and physical parameterizations.

Copyright © 2024 Authors. All rights reserved.

mailto:sandy.herho@email.ucr.ed

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

452

Introduction

The trajectory of neutrally buoyant fluid parcels in oscillating flows is a fundamental problem
in geophysical fluid dynamics (GFD), with implications for oceanic and atmospheric
processes. Inertial oscillations, resulting from the Earth's rotation, significantly influence the
behavior of these fluid parcels [1]. Understanding the trajectories of non-buoyant particles
subjected to oscillating flows is crucial for predicting the transport and dispersion of tracers in
the oceans and atmosphere [2].

Geophysical fluids are characterized by vast spatial scales, complex dynamics, and the
influence of rotational effects [3–5]. The Coriolis force, arising from the Earth's rotation, poses
challenges in modeling fluid motions accurately. Inertial oscillations cause fluid parcels to
oscillate around their mean trajectory, affecting transport and mixing processes in geophysical
systems. Analytical solutions for fluid parcel trajectories under inertial oscillations are often
limited to simplified cases or require restrictive assumptions. Consequently, numerical
simulations have become essential for exploring the dynamics of these systems [6–8],
particularly in two-dimensional (2D) scenarios where vertical motions are neglected. These
idealized 2D models provide a starting point for understanding the fundamental physics
governing fluid parcel trajectories and inform the development of more advanced models.

In this paper, we present a preliminary numerical investigation of the 2D trajectory of a non-
buoyant fluid parcel under inertial oscillations. Although the problem setup is based on a
textbook example [28], we focus on the computational analysis and comparison of different
scientific computing environments for implementing the numerical solution. We aim to
provide insights into the selection and performance of computational tools for simulating such
idealized scenarios, emphasizing educational value.

We implement the simulation using open-source scientific computing environments in
multiple programming languages: Python, GNU Octave, R, Julia, and Fortran. These
environments are widely adopted in scientific computing due to their extensive library
support and ease of use [9-11]. It is important to note that our comparison is not primarily
focused on the programming languages themselves, but rather on the performance of the
scientific computing environments within each language. This approach allows us to evaluate
the suitability and efficiency of these environments for the specific problem at hand,
considering factors such as library availability, ease of implementation, and computational
performance [57, 58].

In this paper, we present a preliminary numerical investigation of the 2D trajectory of a non-
buoyant fluid parcel under inertial oscillations. Although the problem setup is based on a
textbook example [28], our focus is on the computational analysis and comparison of different
scientific computing environments for implementing the numerical solution. We aim to
provide insights into the selection and performance of computational tools for simulating such
idealized scenarios, emphasizing educational value.

We implement the simulation using open-source scientific computing environments in
multiple programming languages: Python, GNU Octave, R, Julia, and Fortran. These
environments are widely adopted in scientific computing due to their extensive library
support and ease of use [9-11]. It is important to note that our comparison is not primarily
focused on the programming languages themselves, but rather on the performance of the
scientific computing environments within each language. This approach allows us to evaluate

 Indonesian Physical Review. 7(3): 451-468

453

the suitability and efficiency of these environments for the specific problem at hand,
considering factors such as library availability, ease of implementation, and computational
performance [57, 58].

The choice of running the simulations for 1,000 iterations is based on a careful balance between
statistical robustness and computational feasibility. While a larger number of iterations
generally leads to more accurate and reliable results, it also increases the computational cost.
We argue that 1,000 iterations provide a sufficiently large sample size for meaningful statistical
analysis while maintaining a reasonable computational burden, especially considering the
educational context of this study. This iteration count allows us to capture the essential
dynamics of the system and demonstrate the performance differences between the scientific
computing environments, which are key objectives of our work. Moreover, 1,000 iterations
ensure that the simulation time remains manageable for students and researchers working
with limited computational resources, making the study more accessible and reproducible in
educational settings.

We argue that a detailed accuracy assessment against analytical solutions or across
implementations is not necessary for the scope and objectives of this study. We focus on the
comparative performance analysis and educational value of implementing the numerical
solution in different programming environments. The employed numerical schemes, such as
the semi-implicit scheme and finite difference discretization, are well-established and
validated in the literature [13, 14]. We rely on their inherent accuracy and consistent
implementation across the environment.

The objectives of this paper are threefold. First, we describe the numerical methods used to
simulate the 2D trajectory of a non-buoyant fluid parcel under inertial oscillations. Second, we
evaluate the computational performance of scientific computing environments in Python,
GNU Octave, R, Julia, and Fortran in tackling this problem, offering insights for researchers
and educators in the GFD community. Third, we contribute to the educational resources
available for teaching and learning about idealized models in fluid dynamics.
This study aims to address a gap in literature by analyzing the numerical simulation of this
idealized problem across multiple scientific computing environments, emphasizing
performance evaluation and educational value. The insights gained will guide the selection of
computational tools and support teaching and understanding fundamental concepts in GFD.
While the choice of programming environment depends on various factors, our findings serve
as a reference point for researchers and educators.

Theory and Calculation

To investigate the motion of a fluid parcel influenced by inertial oscillations in two
dimensions, we start with the Navier-Stokes equations, which describe the conservation of
momentum in fluid dynamics. The Navier-Stokes equations account for external forces,
pressure gradients, and viscous forces within the fluid [17, 18]:

𝜌(𝜕𝑡 𝒖 + 𝒖 ∙ ∇𝒖) = −∇𝑝 + 𝜇∇2 𝒖 + 𝒇

Where, 𝜌 is the fluid density, 𝒖 ≡ (𝒖, 𝒗) is the fluid velocity vector with
components 𝑢 and 𝑣 in the 𝑥 and 𝑦 directions, 𝑝 is the pressure, μ is the dynamic viscosity,
and 𝒇 represents body forces per unit volume. In 2D flow, the Navier-Stokes equations can

(1)

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

454

be separated into two components, one for momentum in the x-direction and one for the y-
direction:

𝜌(𝜕𝑡𝑢 + 𝑢 𝜕𝑥𝑢 + 𝑣 𝜕𝑦𝑢) = − 𝜕𝑥𝑝 + 𝜇(𝜕𝑥𝑥
2 𝑢 + 𝜕𝑦𝑦

2 𝑢) + 𝑓𝑥⬚

(2)

𝜌(𝜕𝑡𝑣 + 𝑢 𝜕𝑥𝑣 + 𝑣 𝜕𝑦𝑣) = − 𝜕𝑦𝑝 + 𝜇(𝜕𝑥𝑥
2 𝑣 + 𝜕𝑦𝑦

2 𝑣) + 𝑓𝑦

We make several assumptions to simplify the Navier-Stokes equations for practical
applications in geophysical fluid dynamics [3]. The fluid is treated as a Newtonian fluid with
constant viscosity, and the flow is assumed incompressible. We apply the continuum
assumption, treating the fluid as a continuous medium, and consider the fluid properties to
be isotropic. The no-slip boundary condition is imposed at solid boundaries, and external
forces other than body forces are neglected unless expressly stated.

Focusing on 2D inertial oscillations, we further assume that the flow is predominantly
horizontal (𝑤 = 0) with no vertical gradients (𝜕𝑧(.) terms are zero). This assumption suits
scenarios where flow dynamics are confined to a thin layer, such as near the ocean surface or
in the atmosphere away from significant topographical influences [19–22]. We consider
environments where pressure gradient forces are negligible compared to the Coriolis and
external forcing terms, which may occur in conditions with strong rotational effects or
relatively uniform pressure fields.

The external forcings influencing the flow dynamics are defined as:

𝑓𝑥 = 𝜕𝑡𝑢𝑓

(3)
𝑓𝑦 = 𝜕𝑡𝑣𝑓

, where 𝑢𝑓 and 𝑣𝑓 represent uniform external forcings in space, such as wind stress or other

steady influences. This assumption allows us to focus on the effect of external forcings
without the complexities introduced by spatial variability.

In our simplified model, we neglect viscosity due to its minimal impact compared to inertial
terms and assume irrotational flow, simplifying the momentum equations. The Navier-Stokes
equations then reduce primarily to expressions influenced by inertial effects and the Coriolis
force, introduced through the Coriolis parameter 𝒇, twice the angular velocity of Earth's
rotation [3]

𝜕𝑡𝑢 = −𝑓 𝑣 + 𝑓𝑥

(4)
𝜕𝑡𝑣 = − 𝑓 𝑢 + 𝑓𝑦

These equations govern the inertial oscillations in a rotating reference frame, simplified to
highlight the oscillatory behavior of fluid parcels. We focus on predicting the pathway of a
non-buoyant fluid parcel, which further simplifies our assumptions by neglecting buoyancy
effects [3]. The pathway of these fluid parcels is given by:

�̇� = 𝑈0 + 𝑢
(5)

 Indonesian Physical Review. 7(3): 451-468

455

�̇� = 𝑉0 + 𝑣

where 𝑈0 and 𝑉0 represent the ambient uniform flow and 𝑢 and 𝑣 are the velocity
perturbations due to inertial oscillations.

While this model is highly simplified, it provides a valuable framework for understanding
and predicting the movement of non-buoyant fluid parcels under specific geophysical
conditions. A rigorous derivation would involve linearizing the Navier-Stokes equations,
possibly introducing adjustments for external forcing terms, and considering geostrophic
balance for large-scale geophysical flows. However, the current formulation captures the
essential physics of inertial oscillations and is a valuable educational tool for exploring fluid
parcel trajectories in idealized scenarios.

It is important to note that the assumptions made in this simplified model, such as neglecting
viscosity and assuming irrotational flow, are not always valid in real-world geophysical
flows. More complex models incorporating additional physical factors and spatial variability
may be necessary for accurate predictions in certain situations. Nevertheless, this idealized
model provides a solid foundation for understanding the fundamental dynamics of inertial
oscillations and serves as a steppingstone towards more sophisticated numerical simulations
in geophysical fluid dynamics.

 Experimental Method

In this study, we employ two numerical techniques to predict the trajectory of non-buoyant
fluid parcels in a rotating fluid system under the influence of inertial oscillations: the semi-
implicit approach and the local rotation method. These methods offer distinct perspectives
and computational strategies for modeling the Coriolis force and other relevant factors.

The semi-implicit approach utilizes the following numerical scheme to predict the fluid parcel
trajectory, as described in equation 4:

𝑢𝑛+1 =
(1 − 𝛽)𝑢𝑛 + 𝛼𝑣𝑛

1 + 𝛽

(6)

𝑣𝑛+1 =
(1 − 𝛽)𝑣𝑛 − 𝛼𝑢𝑛

1 + 𝛽

where 𝑢𝑛 and 𝑣𝑛 are the velocities at the current time step 𝑛, 𝑢𝑛+1 and 𝑣𝑛+1 are the velocities
at the next time step 𝑛 + 1, and the parameters 𝛼 and 𝛽 are defined as 𝛼 = ∆𝑡 𝑓 and 𝛽 = 𝛼/4.
This semi-implicit scheme efficiently integrates the inertial oscillation equations over time,
providing accurate predictions of the fluid parcel's velocity components (𝑢, 𝑣). To predict the
x and y coordinates of a non-buoyant fluid parcel, we discretize the kinematic equation
(equation 5) using finite differences:

∆𝑥 =
𝛼𝑣𝑛

1 + 𝛽
∆𝑡

(7)

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

456

∆𝑦 = −
𝛼𝑢𝑛

1 + 𝛽
∆𝑡

The local rotation method simulates the Coriolis force using a velocity vector rotation:

𝑢𝑛+1 = cos(𝜃)𝑢𝑛 + sin(𝜃)𝑢𝑛
(8)

𝑣𝑛+1 = cos(𝜃)𝑣𝑛 − sin(𝜃)𝑢𝑛

where 𝜃 is determined based on the time step ∆t and the Coriolis parameter 𝑓, given by 𝜃 =

2 sin−1(
Δ𝑡

2
 𝑓). This method effectively captures the Coriolis effect by rotating the velocity

components, aiding in predicting the trajectory of fluid parcels in a rotating system. By
incorporating the finite difference approximation to equation 5, we obtain:

∆𝑥 = (cos(𝜃) − 1) 𝑢𝑛∆𝑡 + sin(𝜃)𝑣𝑛∆𝑡
(9)

∆𝑦 = cos(𝜃)𝑣𝑛∆𝑡 − (sin(𝜃)+1)𝑢𝑛∆𝑡

In our simulation, we model the ambient flow as a uniform northeastward flow with values of
𝑈0 = 5 cm/s and 𝑉0 = 5 cm/s. The total simulation time is 6 days with ∆t = 4320 seconds
(approximately 1.2 days). Three abrupt events change the relative flow speed and direction.
(Δ𝑢 𝑓, Δ𝑣 𝑓), as explained in Table 1.

Table 1. Velocity disturbance parameters

time (days) ∆𝒖𝒇 (cm / s) ∆𝒗𝒇 (cm / s)

1 10 0

2 10 0

4 0 10

We implement these numerical schemes using various open-source computing environments
widely used in earth science and geophysical fluid dynamics. Initially, we apply the schemes
using Fortran, a language with a long history and extensive use in solving such problems [23–
26]. Fortran remains a staple in general circulation models (GCMs) [27], and the 1995 version
has been pivotal in many classic problem-solving scenarios within this domain [28, 29].

We also implement the solutions in Python, leveraging the NumPy library [30]. Python has
gained prominence in scientific computing due to its versatility and extensive libraries,
making it a popular choice for numerical simulations and statistical computations in earth
sciences [31–35]. GNU Octave, an open-source alternative to MATLAB®, is explored as well,
offering a cost-effective solution with a syntax familiar to MATLAB® users. This makes it an
appealing option for GFD modelers and researchers interested in numerical computations
[36–38].

Additionally, we investigate Julia, a computing environment gaining traction among GFD
modelers due to its ability to match Fortran's speed while maintaining Python's ease of use.

 Indonesian Physical Review. 7(3): 451-468

457

Many researchers are considering transitioning from Fortran to Julia for ocean models,
attracted by this combination of performance and user-friendliness [37, 39–43]. Lastly, we
conduct numerical calculations in R, a popular choice within the atmospheric and oceanic
sciences communities [44–47] due to its data analysis and visualization strengths.

The resulting simulation data is preserved in a structured format as a text file, ensuring
accessibility and easy manipulation for further analysis and visualization. For visualization,
we utilize the Matplotlib library [48] within the Python environment, generating static plots
in Portable Network Graphics (.png) format and animations in Graphics Interchange Format
(.gif). These widely supported formats ensure the accessibility and usability of the visualized
data across different systems and applications.

To rigorously evaluate and compare the execution times across diverse programming
languages, we employ Python code to execute each numerical solver 1,000 times, ensuring
robust statistical sampling. Crucial metrics like execution time, return codes, standard output,
and errors are captured using the Subprocess library. The resulting dataset is structured into
a Pandas DataFrame [49] and exported to comma-separated values (.csv) for analysis.

For statistical comparison, we applied the Kruskal-Wallis test [50], a non-parametric method
suitable for comparing multiple independent groups [51]. The Kruskal-Wallis test evaluates
the null hypothesis that the medians of all groups are equal, indicating no significant
difference in performance among programming languages. This test produces a test statistic
H along with a p-value:

𝐻 =
12

𝑁(𝑁 + 1)
∑

𝑅𝑗
2

𝑛𝑗

𝑘

𝑗=1

− 3(N + 1)

In this case, N is the total number of observations, k is the number of groups, 𝑛𝑗 is the number

of observations in the jth group, and 𝑅𝑗
 is the sum of ranks for the jth group. The degrees of

freedom for the Kruskal-Wallis test is df = k − 1.

If the p-value from the Kruskal-Wallis test was below a pre-defined significance level 𝛼 =
0.05, we proceeded with Dunn’s post-hoc test [52]. Dunn’s test is used for pairwise
comparisons between groups to identify which groups exhibit statistically significant
differences in performance [53].

Dunn’s test statistic for pairwise comparisons between groups i and j is given by:

𝑍𝑖𝑗 =
|𝑅𝑖−𝑅𝑗| − (𝑁(𝑁 + 1)) ∕ 12

√𝑁(𝑁 + 1)(𝑁 + 2) ∕ 12

The critical value for Dunn’s test was obtained using the Bonferroni adjustment, where the
significance level α was divided by the number of pairwise comparisons m to control for
multiple testing:

𝛼𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 =
𝛼

𝑚

Pairwise comparisons with |𝑍𝑖𝑗|exceeding the adjusted critical value indicate statistically

significant differences between the corresponding groups. We performed these calculations
automatically using the statistics module in the SciPy [54] and the scikit-posthoc [55] libraries

(11)

(10)

(12)

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

458

in the Python computing environment. This rigorous statistical approach ensured reliable
insights into the computational performance of multiple computing environments for
simulating a 2D fluid parcel trajectory over 1,000 iterations.

While the numerical schemes employed in this study are inspired by the work of Kämpf [28],
we have adapted and expanded upon the original implementation to suit the specific
objectives of our research. The primary focus of our study is to compare the performance of
different programming languages and computing environments in simulating the trajectory
of non-buoyant fluid parcels under inertial oscillations rather than to introduce novel
numerical methods or to conduct a comprehensive accuracy assessment.

We argue that a detailed comparison of the simulation results against analytical solutions or
across different implementations is not strictly necessary for the scope and goals of this study.
The semi-implicit scheme and finite difference discretizations used in our simulations are
well-established numerical methods that have been extensively validated and applied in
geophysical fluid dynamics [63, 64]. These methods have provided accurate and reliable
results for various problems, including the simulation of inertial oscillations [65, 66].

Moreover, the primary objective of this study is to evaluate the computational performance
and educational value of implementing the numerical solution in different programming
languages and environments. By focusing on the relative performance differences between
the implementations rather than on absolute accuracy, we can gain valuable insights into the
suitability and efficiency of each programming language for this specific problem.

It is important to acknowledge that this study's numerical schemes and model setup are
simplified representations of the complex dynamics governing fluid parcel trajectories in real-
world geophysical flows. The assumptions made, such as neglecting vertical motion and
assuming a uniform ambient flow, limit the direct applicability of the results to more realistic
scenarios. However, these simplifications are intentional and create an accessible and easily
understood educational example highlighting the key concepts and challenges of simulating
inertial oscillations.

In summary, our experimental methodology builds upon the foundation laid by Kämpf [28]
but adapts and extends the original implementation to align with the specific goals of our
study. By focusing on the comparative performance of different programming languages and
environments rather than on comprehensive accuracy assessments, we can provide valuable
insights into the computational aspects of simulating fluid parcel trajectories under inertial
oscillations while maintaining a strong emphasis on educational value and accessibility.

Result and Discussion

Simulations were conducted to model the trajectory of a non-buoyant fluid parcel under the
combined influence of inertial oscillations induced by the Earth's rotation, uniform ambient
northeasterly flow over six days, and abrupt disturbance events on days one, two, and four.
The resulting trajectories, plotted against time in Figures 1a and 1b, exhibit oscillatory behavior
with increasing amplitude due to Coriolis effects. The slight path deviations observed can be
attributed to differences in numerical precision across the various programming
environments.

 Indonesian Physical Review. 7(3): 451-468

459

(a)

(b)

Figure 1. Temporal evolution of a non-buoyant fluid parcel undergoing inertial oscillation and abrupt
forcing events in (a) x and (b) y directions.

Figure 2 reveals a spiraling cyclical trajectory forming expanding loops consistent with the
expected inertial oscillation pattern. The triangle markers represent the discretization points
along the fluid parcel trajectory, effectively indicating the temporal evolution of the parcel's
position. The distinct perturbations evident in the trajectory are likely caused by simulated
disturbance events, which have the potential to amplify or dampen the oscillations and
significantly impact parcel transport and dispersion. While we previously suggested that the
increasing oscillation amplitudes might be due to numerical precision, this claim requires
further investigation through simulations with varying time step sizes. Without such analysis,
we refrain from attributing the amplitude growth to any specific factor and acknowledge the
need for additional studies to draw definitive conclusions.

In this idealized scenario, the observed trajectory patterns validate the numerical models'
ability to represent the fundamental rotational dynamics governing fluid motion. Although
implementation differences across programming environments were minor in this case, they
highlight the importance of numerical accuracy and algorithm design for faithfully
representing intricate fluid behavior, which could be amplified under more complex

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

460

conditions. The consistency of the results across different environments reinforces the
robustness of the underlying numerical methods and their suitability for educational
purposes.

Figure 2. The trajectory of a fluid element is propelled within an ambient flow and undergoes inertial
oscillation.

Figure 3 examines the execution times of various computing environments for simulating the
trajectory of a fluid parcel under inertial oscillations in a 2D geophysical fluid system. Based
on 1,000 simulations in each environment (Fortran, Python, Julia, GNU Octave, and R), Fortran
is the leader in speed and consistency. The boxplots and statistical data support this
observation, with Fortran exhibiting the lowest mean execution time of 0.01 seconds, closely
aligned with its median of 0.01 seconds. Furthermore, Fortran demonstrates an exceptionally
low standard deviation of 0.001 seconds, indicating remarkable consistency in performance.

In contrast, Python, R, Julia, and GNU Octave display more significant variability in execution
times, as evidenced by their more extensive interquartile ranges (IQRs) and the presence of
outliers. Among these environments, Python delivers a median execution time of 0.47 seconds,
faster than R (1.01 seconds) and GNU Octave (0.52 seconds). Additionally, Python boasts a
relatively small IQR of 0.064 seconds. However, Julia lags considerably with a median
execution time of 3.8 seconds and a larger IQR of 1.14 seconds, indicating that half of the
simulations in Julia took between 3.12 and 4.26 seconds to complete.

The standard deviations substantiate the variability in execution times across the interpreted
languages. Julia exhibits the most significant standard deviation of 0.593 seconds, followed by
GNU Octave (0.090 seconds) and Python (0.046 seconds). The presence of outliers in Julia (one
at 6.86 seconds) and Octave (one at 1.69 seconds) reinforces this observation.

 Indonesian Physical Review. 7(3): 451-468

461

It is important to note that our comparison focuses on the performance of scientific computing
environments within each programming language rather than the languages in isolation.
While pure Julia has been shown to outperform pure Python in certain benchmarks, our study
utilizes the scientific computing ecosystems available in each language, such as SciPy in
Python and the Julia programming language itself. These ecosystems often leverage optimized
libraries written in lower-level languages like C, which can significantly impact performance.
Therefore, the observed execution times should be interpreted in the context of the specific
scientific computing environments used, rather than as a direct comparison of the languages'
inherent speeds.

Figure 3. Box plots comparing the execution times of simulating the 2D trajectory of a non-buoyant
fluid parcel under inertial oscillations using different open-source programming languages (Fortran,

Python, Julia, GNU Octave, and R) over 1,000 iterations.

Regarding the statistical analysis, we reported p-values as zeros based on the results
obtained from the Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni
correction. The Kruskal-Wallis test yielded a statistically significant result (p-value =
0.000, test statistic = 4577.973), indicating that at least one environment exhibits a
median execution time significantly different from the others. Dunn's post-hoc test
revealed that Fortran's execution times were statistically different from all other
environments (Julia, Octave, Python, and R) at a significance level of 𝛼 = 0.05 (all p-
values were 0.000). Furthermore, pairwise comparisons among the interpreted
languages showed statistically significant differences in their median execution times

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

462

(all p-values were 0.000) (Fig. 4).

Figure 4. Box plots comparing the execution times of simulating the 2D trajectory of a non-buoyant fluid
parcel under inertial oscillations using different open-source programming languages (Fortran, Python,
Julia, GNU Octave, and R) over 1,000 iterations.

We acknowledge the importance of verifying the accuracy of these calculations and ensuring
the appropriate use of statistical tests. In the revised manuscript, we provide a more detailed
description of the statistical methods employed and their assumptions, as well as discuss the
limitations of our analysis given the relatively small sample size. We emphasize the need for
caution in interpreting the results, as they may not generalize to a wider range of scenarios or
programming implementations.

It is crucial to recognize that our study was conducted on a single machine: a Fedora Linux 39
(Budgie) x86_64 system with a 20LB0021US ThinkPad P52s laptop equipped with an Intel i7-
8550U (8) @4.000GHz CPU. This hardware limitation may impact the generalizability of our
results, as performance characteristics could vary across different systems and architectures.
Future studies could explore the performance of these programming environments on a wider
range of hardware configurations to provide a more comprehensive understanding of their
behavior.

Conclusion

The numerical simulation of the trajectory of a non-buoyant fluid parcel under inertial
oscillation in a two-dimensional geophysical fluid system provides valuable insights into the
fundamental physics governing fluid parcel transport and dispersion. By leveraging open-
source scientific computing environments in Python, GNU Octave, R, Julia, and Fortran, this

 Indonesian Physical Review. 7(3): 451-468

463

study contributes to the reproducibility and transparency of scientific research and facilitates
collaborative knowledge sharing within the geophysical fluid dynamics community.

The evaluation of computational performance across multiple programming environments
revealed Fortran as the most efficient choice for simulating this idealized scenario. Statistical
analysis, including the Kruskal-Wallis test and Dunn's post-hoc test with Bonferroni
correction, confirmed that Fortran exhibited significantly faster execution times compared to
the other environments. However, the selection of an appropriate programming language
should also consider factors such as coding expertise, availability of specialized libraries, and
scalability requirements.

It is crucial to recognize that our study focused on the performance of scientific computing
environments within each language, rather than the languages in isolation. The observed
execution times should be interpreted in the context of the specific environments used, as they
often leverage optimized libraries written in lower-level languages. Therefore, the
performance differences cannot be solely attributed to the inherent characteristics of the
programming languages themselves.

While this study provides valuable insights into the performance characteristics of different
scientific computing environments, it is important to acknowledge its limitations. The
idealized nature of the problem setup, with simplified assumptions such as two-dimensional
flow and uniform ambient conditions, may not fully capture the complexities of real-world
geophysical fluid dynamics. Additionally, the focus on a single test case and the use of a single
hardware configuration (a Fedora Linux 39 system with an Intel i7-8550U CPU) may limit the
generalizability of the results.

Future studies could explore more complex scenarios, incorporate additional physical factors
and spatial variability, and investigate the performance impact of different numerical schemes,
grid resolutions, and physical parameterizations. Expanding the analysis to a wider range of
programming environments and hardware configurations would provide a more
comprehensive understanding of the performance landscape.

Despite these limitations, the present study serves as a valuable educational resource,
introducing students and researchers to the process of implementing and comparing
numerical simulations across multiple programming environments. By providing hands-on
experience with a tractable problem, this work promotes a deeper understanding of the
interplay between physical models, numerical methods, and computational tools in
geophysical fluid dynamics.

In summary, this study contributes to the growing body of knowledge in geophysical fluid
dynamics education and computational performance analysis. The insights gained can guide
the selection of appropriate computational tools and inform future educational initiatives.
While the choice of programming environment depends on various factors, our findings serve
as a reference point for researchers and educators in the field. Further investigations and
discussions on the optimal use of computational tools in geophysical fluid dynamics research
and education are encouraged, considering the limitations and potential extensions of this
preliminary study.

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

464

Acknowledgment

We extend our sincere gratitude to Andrew J. Ridgwell, Gayatri Mishra, and Sandra K. Turner
for their invaluable discussions on geophysical fluid dynamics within oceanic realms, and to
Faiz R. Fajary for insightful conversations regarding atmospheric dynamics. Their collective
expertise greatly enriched our understanding and contributed significantly to this work. We
are also grateful for the generous support from the Dean’s Distinguished Fellowship at the
University of California, Riverside (UCR) in 2023 and the ITB Research, Community Services,
and Innovation Program (PPMI-ITB) in 2024, which made this research possible. The code and
complete runtime dataset associated with this paper are accessible through our GitHub
repository: https://github.com/sandyherho/inerOsci.

References

[1] K. Hasselmann, “Wave-driven inertial oscillations,” Geophys. Astrophys. Fluid Dyn., vol.

1, no. 3–4, pp. 463–502, 1970, doi: 10.1080/03091927009365783.

[2] B. Voisin, “Buoyancy oscillations,” J. Fluid Mech., vol. 984, p. A29, 2024, doi:

10.1017/jfm.2024.179.

[3] B. Cushman-Roisin and J.-M. Beckers, Introduction to geophysical fluid dynamics: physical

and numerical aspects. Oxford: Academic Press, 2011.

[4] J. Pedlosky, Geophysical Fluid Dynamics. Berlin: Springer Science & Business Media, 2013.

[5] G. K. Vallis, “Geophysical fluid dynamics: whence, whither and why?,” Proc. Math. Phys.

Eng. Sci., vol. 472, no. 2192, p. 20160140, 2016, doi: 10.1098/rspa.2016.0140.K.

[6] J. D. Denton and W. N. Dawes, “Computational fluid dynamics for turbomachinery

design,” Proc. Inst. Mech. Eng., Part C, vol. 213, no. 2, pp. 107–124, 1998, doi:

10.1243/0954406991522211.

[7] R. Malki, A. J. Williams, T. N. Croft, M. Togneri, and I. Masters, “A coupled blade element

momentum–Computational fluid dynamics model for evaluating tidal stream turbine

performance,” Appl. Math. Model., vol. 37, no. 5, pp. 3006–3020, 2013, doi:

10.1016/j.apm.2012.07.025.

[8] C. Windt, J. Davidson, and J. v Ringwood, “High-fidelity numerical modeling of ocean

wave energy systems: A review of computational fluid dynamics-based numerical wave

tanks,” Renewable and Sustainable Energy Reviews, vol. 93, pp. 610–630, 2018, doi:

10.1016/j.rser.2018.05.020.

[9] A. Bhatt, T. Valentic, A. Reimer, L. Lamarche, P. Reyes, and R. Cosgrove, “Reproducible

Software Environment: a tool enabling computational reproducibility in geospace

sciences and facilitating collaboration,” J. Space Weather Space Clim., vol. 10, p. 12, 2020,

doi: 10.1051/swsc/2020011.

[10] L. Talirz et al., “Materials Cloud, a platform for open computational science,” Sci. Data,

vol. 7, no. 1, p. 299, 2020, doi: 10.1038/s41597-020-00637-5.

https://github.com/sandyherho/inerOsci
https://doi.org/10.1080/03091927009365783
https://doi.org/10.1017/jfm.2024.179.
https://doi.org/10.1098/rspa.2016.0140.K.
https://doi.org/10.1243/0954406991522211.
https://doi.org/%2010.1016/j.apm.2012.07.025.
https://doi.org/10.1016/j.rser.2018.05.020.
https://doi.org/10.1051/swsc/2020011
https://doi.org/10.1038/s41597-020-00637-5.

 Indonesian Physical Review. 7(3): 451-468

465

[11] M. Beg et al., “Using Jupyter for reproducible scientific workflows,” Comput. Sci. Eng.,

vol. 23, no. 2, pp. 36–46, 2021, doi: 10.1109/MCSE.2021.3052101.

[12] N. Lazar, “Ockham’s Razor,” Wiley Interdiscip. Rev. Comput. Stat., vol. 2, no. 2, pp. 243–

246, 2010, doi: 10.1002/wics.75.

[13] N. Jeevanjee, P. Hassanzadeh, S. Hill, and A. Sheshadri, “A perspective on climate model

hierarchies,” J. Adv. Model. Earth Syst., vol. 9, no. 4, pp. 1760–1771, 2017, doi:

10.1002/2017MS001038.

[14] D. Song et al., “Near-inertial oscillations in seasonal highly stratified shallow water,”

Estuar. Coast. Shelf Sci., vol. 258, p. 107445, 2021, doi: 10.1016/j.ecss.2021.107445.

[15] A. K. Mirza, H. F. Dacre, and C. H. B. Lo, “A case study analysis of the impact of a new

free tropospheric turbulence scheme on the dispersion of an atmospheric tracer,” Q. J. R.

Meteorol. Soc., 2024, doi: 10.1002/qj.4681.

[16] F. J. Beron-Vera, “Nonlinear dynamics of inertial particles in the ocean: From drifters and

floats to marine debris and Sargassum,” Nonlinear Dynamics, vol. 103, no. 1, pp. 1–26,

2021, doi: 10.1007/s11071-020-06053-z.

[17] S. v Ershkov, E. Y. Prosviryakov, N. v Burmasheva, and V. Christianto, “Towards

understanding the algorithms for solving the Navier–Stokes equations,” Fluid Dyn. Res.,

vol. 53, no. 4, p. 44501, 2021, doi: 10.1088/1873-7005/ac10f0.

[18] J. W. Garvin, A student’s guide to the Navier-Stokes equations. Cambridge: Cambridge

University Press, 2023.

[19] Li, R., Chen, C., Dong, W., Beardsley, R.C., Wu, Z., Gong, W., Liu, Y., Liu, T., Xu, D.: Slope-

intensified storm-induced near-inertial oscillations in the South China sea. J. Geophys.

Res. Oceans p. 126, vol.3, 2020–016713, 2021, doi: 10.1029/2020JC016713.

[20] T. Hibiya, “A new parameterization of turbulent mixing enhanced over rough seafloor

topography,” Geophys. Res. Lett., vol. 49, no. 2, p. e2021GL096067, 2022, doi:

10.1029/2021GL096067.

[21] X. Luo, X. Huang, J. Fei, J. Wang, C. Li, and X. Cheng, “Role of Topography in Triggering

Elevated Thunderstorms Associated With Winter Cold Fronts Over the Eastern Yunnan-

Guizhou Plateau,” J. Geophys. Res. Atmos., vol. 128, no. 8, p. e2023JD038640, 2023, doi:

10.1029/2023JD038640.

[22] Y. Zhu and X. Liang, “Near-inertial oscillations in the deep Gulf of Mexico,” Deep-Sea

Res. II: Top. Stud. Oceanogr., vol. 210, p. 105310, 2023, doi: 10.1016/j.dsr2.2023.105310.

[23] E. Price, J. Mielikainen, M. Huang, B. Huang, H.-L. A. Huang, and T. Lee, “GPU-

accelerated longwave radiation scheme of the rapid radiative transfer model for general

circulation models (RRTMG),” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 7, no.

8, pp. 3660–3667, doi: 10.1109/JSTARS.2014.2315771.

https://doi.org/10.1109/MCSE.2021.3052101.
https://doi.org/10.1002/wics.75.
https://doi.org/%2010.1002/2017MS001038.
https://doi.org/10.1016/j.ecss.2021.107445.
https://doi.org/10.1002/qj.4681.
https://doi.org/10.1007/s11071-020-06053-z.
https://doi.org/10.1088/1873-7005/ac10f0.
https://doi.org/%2010.1029/2020JC016713
https://doi.org/10.1029/2021GL096067.
https://doi.org/10.1029/2023JD038640.
https://doi.org/10.1016/j.dsr2.2023.105310.

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

466

[24] M. Norman, J. Larkin, A. Vose, and K. Evans, “A case study of CUDA FORTRAN and

OpenACC for an atmospheric climate kernel,” J. Comput. Sci., vol. 9, pp. 1–6, 2015, doi:

10.1016/j.jocs.2015.04.022.

[25] J. Ott, M. Pritchard, N. Best, E. Linstead, M. Curcic, and P. Baldi, “A Fortran-Keras deep

learning bridge for scientific computing,” Sci. Program., vol. 2020, pp. 1–13, 2020, doi:

10.1155/2020/8888811.

[26] W. A. Perkins, N. D. Brenowitz, C. S. Bretherton, and J. M. Nugent, “Emulation of cloud

microphysics in a climate model,” J. Adv. Model. Earth Syst., vol. 16, no. 4, p.

e2023MS003851, 2024, doi: 10.1029/2023MS003851.

[27] I. M. Held and M. J. Suarez, “A Proposal for the Intercomparison of the Dynamical Cores

of Atmospheric General Circulation Models,” Bull. Am. Meteorol. Soc., vol. 75, no. 10, pp.

1825–1830, 1994, doi: 10.1175/1520-0477(1994)075%3C1825:APFTIO%3E2.0.CO;2.

[28] J. Kämpf, Ocean Modelling for Beginners: Using Open-Source Software. Berlin: Springer

Science & Business Media, 2009.

[29] J. Kämpf, Advanced Ocean Modelling: Using Open-Source Software. Berlin: Springer

Science & Business Media, 2010.

[30] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy array: a structure for

efficient numerical computation,” Comput. Sci. Eng., vol. 13, no. 2, pp. 22–30, 2011, doi:

10.1109/MCSE.2011.37.

[31] S. H. S. Herho and D. E. Irawan, “PY-METEO-NUM: Dockerized Python Notebook

Environment for Portable Data Analysis Workflows in Indonesian Atmospheric Science

Communities,” Int. J. Data Sci., vol. 2, no. 1, pp. 38–46, 2021, doi: 10.18517/ijods.2.1.38-

46.2021. S. H. S. Herho, “A Univariate Extreme Value Analysis and Change Point

Detection of Monthly Discharge in Kali Kupang, Central Java, Indonesia,” JOIV : Int. J.

Inform. Visualization, vol. 6, no. 4, pp. 862–868, 2022, doi: 10.30630/joiv.6.4.953.

[32] S. H. S. Herho, “A Univariate Extreme Value Analysis and Change Point Detection of

Monthly Discharge in Kali Kupang, Central Java, Indonesia,” JOIV : Int. J. Inform.

Visualization, vol. 6, no. 4, pp. 862–868, 2022, doi: 10.30630/joiv.6.4.953.

[33] Y.-K. Qian, “xinvert: A Python package for inversion problems in geophysical fluid

dynamics,” J. Open Source Softw., vol. 8, no. 89, p. 5510, 2023, doi: 10.21105/joss.05510.

[34] J. Yu, T. Mukerji, and P. Avseth, “rockphypy: An extensive Python library for rock physics

modeling,” SoftwareX, vol. 24, p. 101567, 2023, doi: 10.1016/j.softx.2023.101567.

[35] R. Suwarman et al., “imc-precip-iso: open monthly stable isotope data of precipitation

over the Indonesian Maritime Continent,” J. of Data, Inf. and Manag., pp. 1–12, 2024, doi:

10.1007/s42488-024-00116-1.

https://doi.org/10.1016/j.jocs.2015.04.022.
https://doi.org/10.1155/2020/8888811.
https://doi.org/10.1029/2023MS003851
https://doi.org/10.1175/1520-0477(1994)075%3C1825:APFTIO%3E2.0.CO;2.
https://doi.org/10.1109/MCSE.2011.37.
https://doi.org/10.30630/joiv.6.4.953
https://doi.org/10.30630/joiv.6.4.953.
https://doi.org/10.21105/joss.05510.
https://doi.org/10.1016/j.softx.2023.101567.
https://doi.org/10.1007/s42488-024-00116-1.

 Indonesian Physical Review. 7(3): 451-468

467

[36] J. B. D. Jaffrés, “GHCN-Daily: a treasure trove of climate data awaiting discovery,”

Comput. Geosci., vol. 122, pp. 35–44, 2019, doi: 10.1016/j.cageo.2018.07.003. O.

[37] Sulpis et al., “RADIv1: a non-steady-state early diagenetic model for ocean sediments in

Julia and MATLAB/GNU Octave,” Geosci. Model Dev., vol. 15, no. 5, pp. 2105–2131, 2022,

doi: 10.5194/gmd-15-2105-2022.

[38] J. B. D. Jaffrés and J. L. Gray, “Chasing rainfall: estimating event precipitation along tracks

of tropical cyclones via reanalysis data and in-situ gauges,” Environ. Model. Softw., vol.

167, p. 105773, 2023, doi: 10.1016/j.envsoft.2023.105773.

[39] J. M. Perkel, “Julia: come for the syntax, stay for the speed,” Nature, vol. 572, no. 7767, pp.

141–142, 2019, doi: 10.1038/d41586-019-02310-3.

[40] A. Ramadhan et al., “Oceananigans. jl: Fast and friendly geophysical fluid dynamics on

GPUs,” J. Open Source Softw., vol. 5, no. 53, 2020, doi: 10.21105/joss.02018.

[41] N. Constantinou, G. Wagner, L. Siegelman, B. Pearson, and A. Palóczy,

“GeophysicalFlows. jl: Solvers for geophysical fluid dynamics problems in periodic

domains on CPUs GPUs,” J. Open Source Softw., vol. 6, no. 60, 2021, doi:

10.21105/joss.03053.

[42] S. Partee et al., “Using machine learning at scale in numerical simulations with SmartSim:

An application to ocean climate modeling,” J. Comput. Sci., vol. 62, p. 101707, 2022, doi:

10.1016/j.jocs.2022.101707.

[43] S. Bishnu, R. R. Strauss, and M. R. Petersen, “Comparing the Performance of Julia on CPUs

versus GPUs and Julia-MPI versus Fortran-MPI: a case study with MPAS-Ocean (Version

7.1),” Geosci. Model Dev., vol. 16, no. 19, pp. 5539–5559, 2023, doi: 10.5194/gmd-16-5539-

2023.

[44] B. Czernecki, A. Głogowski, and J. Nowosad, “Climate: An R package to access free in-

situ meteorological and hydrological datasets for environmental assessment,”

Sustainability, vol. 12, no. 1, p. 394, 2020, doi: 10.3390/su12010394.

[45] S. H. S. Herho, F. Brahmana, K. E. P. Herho, and D. E. Irawan, “Does ENSO significantly

affect rice production in Indonesia? A preliminary study using computational time-series

approach,” Int. J. Data Sci., vol. 2, no. 2, pp. 69–76, 2021, doi: 10.18517/ijods.2.2.69-76.2021.

[46] N. P. McKay, J. Emile-Geay, and D. Khider, “GeoChronR–an R package to model, analyze

and visualize age-uncertain paleoscientific data,” Geochronology, vol. 2020, pp. 1–33,

2020, doi: 10.5194/gchron-3-149-2021.

[47] M. D. Ashkezari et al., “Simons collaborative marine atlas project (Simons CMAP): an

open-source portal to share, visualize, and analyze ocean data,” Limnol. Oceanogr.

Methods, vol. 19, no. 7, pp. 488–496, 2021, doi: 10.1002/lom3.10439.

https://doi.org/10.1016/j.cageo.2018.07.003.%20O.
file:///T:/Local%20Files/Downloads/%20https/doi.org/10.5194/gmd-15-2105-2022
https://doi.org/10.1016/j.envsoft.2023.105773.
https://doi.org/10.1038/d41586-019-02310-3.
https://doi.org/10.21105/joss.02018.
https://doi.org/10.21105/joss.03053.
https://doi.org/10.1016/j.jocs.2022.101707.
https://doi.org/10.5194/gmd-16-5539-2023.
https://doi.org/10.5194/gmd-16-5539-2023.
https://doi.org/10.3390/su12010394.
https://doi.org/10.18517/ijods.2.2.69-76.2021.
https://doi.org/10.5194/gchron-3-149-2021.
https://doi.org/10.1002/lom3.10439.

 P-ISSN: 2615-1278, E-ISSN: 2614-7904

468

[48] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Comput. Sci. Eng., vol. 9, no. 03,

pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[49] W. McKinney, “pandas: a foundational Python library for data analysis and statistics,”

Python for High Performance and Scientific Computing, vol. 14, no. 9, pp. 1–9, 2011.

[50] W. H. Kruskal and W. A. Wallis, “Use of Ranks in One-Criterion Variance Analysis,” J.

Am. Stat. Assoc., vol. 47, no. 260, pp. 583–621, 1952, doi: 10.1080/01621459.1952.10483441.

[51] E. Ostertagova, O. Ostertag, and J. Kováč, “Methodology and application of the Kruskal-

Wallis test,” Appl. Mech., vol. 611, pp. 115–120, 2014, doi:

10.4028/www.scientific.net/AMM.611.115.

[52] O. J. Dunn, “Multiple comparisons using rank sums,” Technometrics, vol. 6, no. 3, pp.

241–252, 1964, doi: 10.1080/00401706.1964.10490181.

[53] G. D. Ruxton and G. Beauchamp, “Time for some a priori thinking about post hoc testing,”

Behav. Ecol., vol. 19, no. 3, pp. 690–693, 2008, doi: 10.1093/beheco/arn020.

[54] P. Virtanen et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in

Python,” Nat. Methods, vol. 17, pp. 261–272, 2020, doi: 10.1038/s41592-019-0686-2.

[55] M. A. Terpilowski, “scikit-posthocs: Pairwise multiple comparison tests in Python,” J.

Open Source Softw., vol. 4, no. 36, p. 1169, 2019, doi: 10.21105/joss.01169.

[57] K. J. Millman and M. Aivazis, "Python for Scientists and Engineers," Computing in Science

Engineering, vol. 13, no. 2, pp. 9–12, Mar. 2011, doi: 10.1109/MCSE.2011.36.

[58] T. Kluyver et al., "Jupyter Notebooks – a publishing format for reproducible

computational workflows," in Positioning and Power in Academic Publishing: Players,

Agents and Agendas, 2016, pp. 87–90.

[63] R. Hallberg, "Using a resolution function to regulate parameterizations of oceanic

mesoscale eddy effects," Ocean Model., vol. 72, pp. 92–103, 2013, doi:

10.1016/j.ocemod.2013.08.007.

[64] P. Bougeault and P. Lacarrere, "Parameterization of Orography-Induced Turbulence in a

Mesobeta--Scale Model," Mon. Weather Rev., vol. 117, no. 8, pp. 1872–1890, 1989, doi:

10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

[65] G. Danabasoglu, S. C. Bates, B. P. Briegleb, S. R. Jayne, M. Jochum, W. G. Large, S. Peacock,

and S. G. Yeager, "The CCSM4 Ocean Component," J. Clim., vol. 25, no. 5, pp. 1361–1389,

2012, doi: 10.1175/JCLI-D-11-00091.1.

[66] G. Madec, "NEMO ocean engine," Institut Pierre-Simon Laplace (IPSL), France, No. 27,

ISSN No 1288-1619, 2008, doi: 10.5281/zenodo.3248739.

https://doi.org/10.1109/MCSE.2007.55.
https://doi.org/10.1080/01621459.1952.10483441.
https://doi.org/10.4028/www.scientific.net/AMM.611.115.
https://doi.org/10.1080/00401706.1964.10490181
https://doi.org/10.1093/beheco/arn020.
https://doi.org/10.1038/s41592-019-0686-2.
file:///T:/Local%20Files/Downloads/%20https/doi.org/10.21105/joss.01169

