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 The development of hard magnets today is progressing very rapidly. 
Developing hard magnets based on rare earth metals becomes a severe 
problem when the raw materials are not readily available. The chosen 
solution is to replace oxide-based permanent magnets with small 
amounts of rare earth metals substituted to improve their magnetic 
properties. This study synthesized a permanent magnet oxide based on 
barium hexaferrite doped with lanthanum and cerium atoms. In the 
synthesis of this material, a mechanical wet milling technique is used 
to obtain a single-phase permanent magnetic Ba1-β-γLaβCeγFe12O19 
system with composition (β = 0 - 0.5 and γ = 0 - 0.1). The precursors 
are weighted according to their stoichiometric composition. Each 
mixed composition was milled by high energy milling (PW 1000 in 
the mixer/mill) at a milling speed of 1000 rpm using steel balls with 
an average diameter of 12 mm. Grinding conditions included a ball-
to-powder weight ratio of 2:1, milling time 5 hours, then compacted 
with 7000 Psi pressure and sintered at 1200oC for 2 hours. The surface 
morphology and microstructure of the resulting sample particles were 
observed using scanning electron microscopy (SEM) with the SEM 
JEOL JED 305 brand. The characterization results show that the 
particles are hexagonally homogeneous in shape with particle sizes in 
the range of 1000-2000 nm for β = 0 and γ = 0 (without doping). The 
four samples with varying concentrations of doping ions La3+ and Ce4+ 
showed homogeneous hexagonal structures but smaller particle sizes 
than pure barium hexaferrite. The sample particle sizes ranged from 
500-1000 nm for β = 0.02 and 300-1000 nm for β = 0.04. 
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Hard magnets are essential components needed by the automotive industry [1]. Permanent 
magnets in electric motors must operate at temperatures of 200oC without reducing their 
magnetic capability [2]. Depending on their constituent materials, there are two types of 
permanent magnets: metal alloy permanent magnets and ceramic oxide permanent magnets. 
Both have their advantages and disadvantages. Although metal alloy-based permanent 
magnets are powerful magnets, this type of magnet is not easy to manufacture, has low 
corrosion resistance, and has the disadvantages of relatively low operating temperature (Tc = 
3000C); it also has small product energy[3].  

Rare earth metals are abundant on Indonesian coasts, and the refining process has been 
mastered [4]. The results of this monazite sand extraction can produce La2O3, CeO2, and Nd2O3. 
This material can be used as an ingredient in making permanent magnets. 

Several pieces of literature show that lanthanum substituting strontium and cobalt covering 
iron has significantly increased hexagonal ferrite's coercivity field and remanent 
magnetization [2], [5]. Moreover, by reducing the particle size, the coercive field can be almost 
doubled when the particle size is less than 100 nm[6], [7]. However, this reduction in particle 
size results in a single domain, which generates a solid, robust dipolar force that opposes the 
alignment of its magnetic spins under an external magnetic field[8]. 

Previous research has been conducted to make oxide permanent magnets substituted with La3+ 
ions [9]. The results show that the La3+ doped ion barium hexaferrite sample raised the 
magnetic coercivity field in the composition of Ba0.96La0.04Fe12O19 [9]. Subsequent research used 
Ce4+ doping ions, the results identified a single phase at a composition of x = 0.1, while for x > 
0.1 a secondary phase was formed [5]. 

In this paper, the authors have focused on synthesizing M-type barium hexaferrite by 
substituting La3+ ions and tetravalent Ce4+ ions and their effect on surface morphology and 
particle size homogeneity [6], [10]. Adding the concentration of La3+ ions and Ce4+ tetravalent 
ions together is a new combination where Lanthanum and Cerium atoms can replace some 
positions of barium without disturbing the Fe positions [11], [12]. The process used to produce 
this precursor is wet mechanical milling, which has the advantages of being simple, easy, and 
inexpensive. Moreover, this method can reduce the precursor's particle size and make the 
mixture more homogeneous with a relatively short milling time [13]– [15]. 

 

Experimental Method 

Research on the effect of barium substitution with La3+ and Ce4+ begins with weighing the 
main research oxide raw materials, namely BaCO3, Fe2O3, La2O3, and CeO2, with compositions 
adjusted to alter the doping of atoms for variations in the concentration of La3+ and Ce4+ 
substitutions needed, and the amount was calculated according to stoichiometric 
calculations. Each mixed composition was milled by high energy milling (PW 1000 in the 
mixer/mill) at a milling speed of 1000 rpm using steel balls with an average diameter of 12 
mm. Milling conditions included a ball-to-powder weight ratio of 2:1, milling time 5 hours, 
followed by compaction at 7000 psi and sintering at 1200°C for 2 hours. The surface 
morphology and microstructure of the sample Ba1-β-γLaβCeγFe12O19 (β = 0, 0.02, 0.04 and γ = 
0, 0.05, 0.1) were observed using scanning electron microscopy (SEM) with the SEM brand 
JEOL JED 305. 

Result and Discussion 
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The surface morphology and microstructure of the sample Ba1-β-γLaβCeγFe12O19 (x = 0, 0.02, 0.04 

and y = 0, 0.05, 0.1) were observed using SEM presented in Figures 1, 2 and 3. Figure 1 shows 

the particle microstructure of the pure barium hexaferrite sample (β = 0 and γ = 0). The 

particles were hexagonal with homogeneous particle sizes obtained from SEM photographs in 

the range of 1000-2000 nm [16], [17]. Particle diffusion resulting from the sintering process at 

1200oC for 2 hours produces a homogeneous shape as shown in Figure 1 where the 

crystallization phase of the material has been achieved. 

 

 
 
Figure 1. Particle surface morphology of pure barium hexaferrite 
samples (β = 0 and γ = 0) 

Figures 2 (a) and 2 (b) showed the surface morphology of barium hexaferrite sample particles 

doped with La3+ and Ce4+ ions with compositions β = 0.02, γ = 0.05, and β = 0.02, γ = 0.1. Based 

on SEM, the sample particle sizes ranged from 500-1000 nm. 

Figures 3 (a) and 4 (b) showed the surface morphology of barium hexaferrite sample particles that 

have been doped with La3+ and Ce4+ ions with compositions β = 0.04, γ = 0.05 and β = 0.04, γ = 

0.1. 
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Figure (2a). Surface morphology of barium hexaferrite sample 
particles doped with La3+ and Ce4+ ions (β = 0.02 and γ = 0.05). 

 

 
 
Figure (2b). Surface morphology of barium hexaferrite sample 
particles doped with La3+ and Ce4+ ions (β = 0.02 and γ = 0.1). 
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Figure (3a). Surface morphology of sample particles doped with La3+ 
and Ce4+ ions (β = 0.04 and γ = 0.05) 

 

 
 
Figure (3b). Surface morphology of sample particles doped with La3+ 
and Ce4+ ions (β = 0.04 and γ = 0.1). 

 

 

Based on SEM photos, the particle size from the sample was in the range of 300-1000 nm. Thus, the 

doping ions La3+ and Ce4+ played a role in restraining the growth rate of the particles in the sample 

because they were thought to be related to the high melting temperature of the two doping ions[18], 

[19]. On the other hand, according to the results of XRD measurements on the Bragg diffraction peaks, 

slightly doped samples experienced a broadening of the peaks, indicating that the size of the crystallites 
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was getting smaller so that it had an impact on the formation of the particle size [5], [20]. Unit cell 

volume data for pure samples is 695.231 Å3, for samples β = 0.02 and γ = 0.05 the unit cell volume is 

694.686 Å3, and for samples β = 0.04 and γ = 0.05 the unit cell volume is 694.241 Å3. Another assumption 

relates to the doping atomic radius. The doped ionic radius of La (r = 145 pm) and Ce (r = 145 pm) were 

smaller than the atomic radii of Ba (r = 155 pm). So, the volume of the unit cell also decreases, but it is 

different from the atomic density, which seems to increase as the doping ion concentration increases. 

Atomic density data for pure samples is 5.726 g/cm3, for samples β = 0.02 and γ = 0.05 the atomic 

density is 5.749 g/cm3, and for samples β = 0.04 and γ = 0.05 the atomic density is 5.755 g/cm3. The 

overall atomic density was influenced by the density of the doping atoms, which was relatively smaller 

than the atomic radius of barium, resulting in a decrease in the unit cell volume of this barium 

hexaferrite crystal[21], [22]. 

The ion-magnetic cation substitution Ce4+ was at the Ba atomic site [14], [23]. The magnetic saturation 

of samples doped with La3+ and Ce4+ ions was higher than that of pure barium hexaferrite. Magnetic 

saturation data for pure samples is 0.28 T, for samples β = 0.02 and γ = 0.05 the magnetic saturation is 

0.29 T and for samples β = 0.04 and γ = 0.05 the magnetic saturation is 0.3 T. The contribution of the 

non-magnetic doping ion La3+ was to restrain grain growth, as indicated by the SEM photo, where the 

particle sizes before and after doping differed. had sample after doping seemed to have a relatively 

smaller particle size than before doping. This condition can increase the energy of the domain walls, 

namely magneto crystalline energy and Zeeman energy, so that it can increase its anisotropic 

energy[24], [25].  

Figure 4 showed that the decrease in particle size in the doped sample was accompanied by a reduction 

in the crystallite size distribution[26]. The doped ionic radii of La (r = 145 pm) and Ce (r = 145 pm) are 

smaller than the atomic radius of Ba (r = 155 pm). So, the unit cell volume is reduced. The crystallite 

size distribution of pure barium hexaferrite samples or samples not doped with La3+ and Ce4+ ions 

appear larger than that of doped barium hexaferrite samples. 

 
 
Figure 4. Crystallite size distribution of samples Ba1-β-γLaβCeγFe12O19; (a) β = 0 and 
γ=0 (b) β=0.04 and γ =0.05) 
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Conclusion 

Synthesis of the sample Ba1-β-γLaβCeγFe12O19 (β = 0.02, 0.04 and γ = 0.05, 0.1) was successfully 

carried out using the wet mechanical milling method. All samples with varying concentrations 

of doping ions La3+ and Ce4+ had homogeneous hexagonal structures but had smaller particle 

sizes than those of pure barium hexaferrite. Pure samples (β = 0; γ = 0) had particle sizes in the 

range of 1000-2000 nm, doped samples (β = 0.02; γ = 0.05-0.1) were 500-1000 nm, and doped 

samples (β = 0.04; γ = 0.05-0.1) were 300-1000 nm. 
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