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 As a consequence that geometrical optics (the eikonal equation) can be 
derived from Maxwell’s equations and Maxwell’s theory is nothing 
but an Abelian U(1) gauge theory, we propose that geometrical optics 
could also be treated as an Abelian U(1) gauge theory. We formulate 
geometrical optics as an Abelian U(1) gauge theory in a (3+1)-
dimensional vacuum space-time as an approximation of the weak field. 
We show the explicit form of the phase, the gauge potential, and the 
field strength tensor related to the refractive index. We calculate 
numerically the refractive index and the magnetic field using the 
suitable parameters that we choose to mimic the real condition of 
nature. We obtain (without unit) the values of the refractive 
index  𝑛(𝑟)=1.0001 to represent a vacuum space-time and the 
amplitude ρ = 0.55853 related to magnitude of the magnetic field 

|�⃗⃗⃗�| = 0.10452 to represent the weak field.  The view of geometrical 
optics as gauge theory could be generalized or related to topological 
field theory where geometrical optics could have a topological 
structure in the case of the weak field. 

 
Copyright © 2024 Authors. All rights reserved. 

 

 

  

 

Introduction 

Why geometrical optics? Geometrical optics is a simplified theory than the electromagnetic 
wave of Maxwell’s theory to describe the behaviour of light. The geometrical optics 
corresponds to the limiting case of a very small wavelength of light, λ →  0 [1,2], in 
comparison with the characteristic dimension of the problem [3] i.e. the system with which 
light interacts [4] or to each of the other scales present (the scale of observation [5]), so that 
the electromagnetic waves can be regarded locally as plane waves propagating through 
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space-time [6]. Geometrical op tics employs the concept of rays, which are defined as the 
direction of propagation of energy in the limit λ → 0 [4]. The fact that λ → 0 in comparison 
with the scale of observation is called the classical limit [7]. 

As an example that geometrical optics is a simpler theory than electromagnetic wave, we 
can observe that the spreading of light due to diffraction is entirely because of the 
finiteness of the wavelength. However, if we assume that the wavelength tends to zero 
then we can perform the infinitesimally thin beam of light that defines rays [4]. 

It is commonly considered that an Abelian U(1) local gauge theory describes Maxwell’s 
theory. It is very rare to find an article that discusses geometrical optics as an Abelian 
U(1) local gauge theory [8,9]. Geometrical optics as an Abelian U(1) local gauge theory 
in a (3+1)-dimensional vacuum space-time had been considered [9]. There [9] the 
electromagnetic wave or light ray propagation had been formulated as the dispersion 
relation from which the eikonal-type equation can be reconstructed. They [8,9] do not 
formulate the explicit form of the phase related to the refractive index. Also, it [9]  says  
nothing that a vacuum could be approximated using the weak-field limit. 

In this article, we propose geometrical optics as an Abelian U(1) local gauge theory in a 
(3+1)-dimensional vacuum space-time as an approximation of the weak-field limit. We 
will formulate the explicit form of the phase (in turn the gauge potential and the field 
strength tensor) related to the refractive index and we will apply the idea of a vacuum as 
the weak-field limit to the geometrical optics. We consider these two points to be new 
ones.  

Why could geometrical optics be treated as an Abelian U(1) local gauge theory? One of the 
reasons is the geometrical optics (the eikonal equation) can be derived from Maxwell’s 
equations [4,10,11]. Rays in geometrical optics are invariant under a local gauge 
transformation [12]. This view of geometrical optics as a gauge theory, in turn, could be 
generalized or related to topological field theory where geometrical optics could have a 
topological structure.  

Why could geometrical optics in a vacuum space-time be treated as a weak-field limit 
theory?  What we mean by a vacuum space-time is space-time where the field is weak. 
The field here can be an electric field, magnetic field, or electromagnetic field. This 
vacuum (weak-field) space-time is related to the space-time of the infinite radius, r, from 
sources (a charge, current).  We could say that a vacuum (weak-field) space-time implies 
the isotropic space-time. A vacuum space-time which could be considered as the weak-
field limit of the electromagnetic fields (consisting of a scalar field) had been proposed 
successfully a long time ago [13].  

Abelian U(1) Gauge Theory 

Maxwell’s theory is well known as an Abelian U(1) local gauge theory. The treatment of 
the geometrical optics as an Abelian U(1) local gauge theory implies the gauge potential 
of the geometrical optics and Maxwell’s theory are the same, i.e. both are the Abelian U(1) 
gauge  potential which commonly can be written as 

�⃗⃗⃗�𝜇 = �⃗⃗⃗�𝜇(�⃗⃗�, 𝑡)𝑒𝑖𝑞(�⃗⃗⃗�,𝑡)                                                                              (1) 

where  �⃗⃗⃗�𝜇   is  a  complex [6,14] gauge  potential,  �⃗⃗⃗�𝜇(�⃗⃗�, 𝑡)  is  a complex amplitude [13], a 

slowly varying function of space coordinates   and   time [3],   𝑞(�⃗⃗�, 𝑡) is the eikonal (a 
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real phase [6]), a function of space coordinates and time, 𝑞(�⃗⃗�, 𝑡) is a complex scalar 

function. �⃗⃗⃗�𝜇 as a complex amplitude can be interpreted as the oscillating variable [15], 

the displacement from an equilibrium [16] i.e. a position at infinity where the gauge 
potential can be assumed equal to zero.  

As an Abelian U(1) local gauge theory, the field strength tensor of Maxwell’s theory can 
be written as 

�⃗⃗⃗⃗�𝜇ʋ = 𝜕𝜇 �⃗⃗⃗�ʋ − 𝜕ʋ�⃗⃗⃗�𝜇                                                                                (2) 

where ∂µ denotes the partial derivative (four-gradient) and µ denotes the three-
dimensional space plus one- dimensional  time, �⃗⃗⃗�ʋ is  the  gauge  potential.  It means that 
we have also such field strength tensor and related gauge potential in geometrical optics. 

Electromagnetic, Subset and Weak Fields 

Let us assume that the electromagnetic fields (the set of the solutions of Maxwell 
equations) in a vacuum space- time have  a  subset  field [17],  𝜑(�⃗⃗�, 𝑡)  a  scalar  function  of  
a space-time. Any electromagnetic field is locally equal to a subset field i.e. any 
electromagnetic field can be obtained by patching together subset fields (except in a zero-
measure set) but globally different [17]. This means that the difference between the set of 
the subset fields and all the electromagnetic fields in Maxwell’s theory in a vacuum 
space-time is global instead of local since the subset fields obey the topological quantum 
condition [17].  

The electromagnetic field satisfies a linear field equation, but a subset field satisfies a 
non-linear field equation. Both fields, the electromagnetic field, and a subset field, satisfy 
the linear field equation in the case of the weak field [13]. In other words, the vacuum 
Maxwell’s theory is the weak field limit [13] of a non-linear subset field theory. It means 
that a non-linear subset field theory reduces to the vacuum Maxwell’s linear theory in 
the case of the weak field. A space-time where the weak field lives approximately 
represents a vacuum space-time.  

As a consequence that the electromagnetic fields in a vacuum space-time have a subset 
field, a scalar function of space-time with all of its properties, we also have such subset 
field in geometrical optics which can be written as  

                                    𝜑(�⃗⃗�, 𝑡) = 𝜌(�⃗⃗�, 𝑡)𝑒𝑖𝑞(�⃗⃗⃗�,𝑡)                                                                       (3) 

and 

f (�⃗⃗�, 𝑡) = −1/[2π(1 + ρ2)]                                                                                        (4) 

where  ρ(�⃗⃗�, 𝑡)  is  the  amplitude,  a  slowly  varying  function of  the  coordinates  and  time   

[3] (or constant [18]),  𝑞(�⃗⃗�, 𝑡) is the  phase,  f (�⃗⃗�, 𝑡 )  is  the  function  of  amplitude. What     
we mentioned previously by the weak-field is |𝜑𝜑∗| ≪ 1 where 𝜑∗ is the complex 
conjugate of 𝜑. The assumptions that the set of the solutions of Maxwell equations in a 
vacuum space-time has a subset field has far-reaching consequences. 

We call  the  functions,   f (�⃗⃗�, 𝑡 ) and  𝑞(�⃗⃗�, 𝑡),   shown  in eqs. (3), (4), as the Clebsch variables 
[19] or Gaussian potentials [20]. These Clebsch variables are related to any divergence-

less vector field [17]. An example of a divergence-less vector field is the magnetic field �⃗⃗⃗�, 
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r1 

∫ 

where  ∇⃗⃗⃗ • �⃗⃗⃗�  = 0. The Clebsch variables are not uniquely defined. However, many 
different choices are possible for them [17]. The treatment (3) is based on the wave point 
of view of the field. We could interpret the scalar field as the disturbance where the 
physical disturbance is the real part of a scalar field [21].  

By using the Clebsch variables, f and q [19], the field strength tensor of the geometrical 
optics, eq.(2), can be written as [19]  

     �⃗⃗⃗⃗�𝜇ʋ   = ∂µ(f  ∂νq) − ∂ν(f  ∂µq).                                                                             (5) 

The eqs. (2), (5) are the linear field equations. 

By observing the equality of eqs. (2) and (5), we see that [19]  

�⃗⃗⃗�ʋ  = f  ∂ν  q.                                                                               (6) 

Eq. (6) shows that the gauge (vector) potential can be  written using the Clebsch 
(scalar) variables. 

Phase in Geometrical Optics  

What is a  phase,  𝑞(�⃗⃗�, 𝑡),  in  geometrical  optics?   Why phase?   Let us introduce  𝜓1(𝑟)  
which  is  called  eikonal [3]. The relation  between  𝜓1(𝑟)  and 𝑞(�⃗⃗�, 𝑡)  can  be  expressed as 
[3] 

 𝜓1(𝑟) =
𝑐

𝑓𝜃
𝑞(�⃗⃗�, 𝑡) + 𝑐𝑡                                                                                   (7)    

        

where 𝜓1(𝑟)  as we  see  explicitly  is  a  function  of  space coordinates only [3], ”a length” 
of line in space, a real [22] scalar function. 
 
We can formulate phase in geometrical optics by substituting the eikonal equation,            

|∇⃗⃗⃗𝜓1(𝑟)| =  n(𝑟) [3],  into eq.(7), we obtain [23] 

  𝑞(�⃗⃗�, 𝑡) = 𝑋(𝜓1 − 𝑐𝑡) = 𝑋 (∫ 𝑛(�⃗⃗�)𝑑3𝑟
𝑟2

𝑟1
− 𝑐𝑡)                                                (8)  

where  𝑋 = 𝑓𝜃 𝑐⁄   and n(𝑟)  is  the  refractive  index. The refractive index is the real scalar 
function of coordinates (vector position) with positive values, the slowness at a point [24].  
The refractive index is typically supplied as known input, given, and we seek the 

solution,  the phase [24]. The integral ∫ 𝑑3𝑟
𝑟2

𝑟1
 shows the propagation of ray from the 

initial position, r1, to the final position, r2, in 3-dimensional space.  
 

The importance of the phase is the value of the gauge potential, the field strength tensor, 
and in turn the energy is unchanged although we change the phase i.e. the phase or the 
gauge transformation. It differs from the other component of the scalar field, i.e. the 
amplitude. The energy of the physical system we observe is changing if we change the 
amplitude.  

 

We see from eq.(9) that the phase is related to the refractive index. We could say that it is a 
new formulation of a Clebsch variable of the phase related to the refractive index. This phase 
related to the refractive index satisfies the divergence-less property of any vector field. The 
divergence-less property of any vector field means that there is no source to give rise to such 
a vector field. However, we could approximate ”there is no source” with ”the weak field 
related to the infinite radius from the source”.  
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   The infinite radius from the source implies the isotropic space-time where the direction 
does not matter. In the isotropic space-time, the value of the refractive index is determined 
solely by the distance from the origin. That is why the property of a scalar field is 
isotropic (well-defined) for an infinite distance (radius) from the origin or the source. 
The property of a scalar field as a function of space-time (physics) seems likely in harmony 
with the property of space-time (geometry).  A space-time could be locally anisotropic but 
globally isotropic (the distribution of matter-energy in the universe is assumed to be 
homogeneous). 

 
In the case of the time-independent, eq.(8) becomes 
  𝑞(�⃗⃗�) = 𝑋 ∫ 𝑛(�⃗⃗�)𝑑3𝑟

𝑟2

𝑟1
.                                                                                        (9) 

Eq.(9) tells us that the phase transformation reduces to the refractive index transformation 
determined solely by the value of the distance from the origin or the source. The refractive 
index is a number and the phase is an angle in radians or degrees.  

 

By substituting eq.(8) into eqs. (6), (5), the gauge po tential (6) and the field strength 
tensor (5) becomes 

   �⃗⃗⃗�ʋ   = f  ∂ν  [𝑋 (∫ 𝑛(�⃗⃗�)𝑑3𝑟
𝑟2

𝑟1
− 𝑐𝑡)]                                                     (10) 

and 

   �⃗⃗⃗⃗�𝜇ʋ  = ∂µ{𝑓  𝜕𝜈 [𝑋 (∫ 𝑛(�⃗⃗�)𝑑3𝑟
𝑟2

𝑟1
− 𝑐𝑡)]}− ∂ν{𝑓𝜕µ [𝑋 (∫ 𝑛(�⃗⃗�)𝑑3𝑟

𝑟2

𝑟1
− 𝑐𝑡)]}  (11) 

respectively. Eqs. (10), (11) are the explicit forms of the gauge potential and the field 
strength tensor formulations in the geometrical optics, respectively.  

 

Numerical Simulation 

 
In the calculation of the refractive index where the refractive index decreases radially 
out from the origin (the location of sources), we use the relation below [25] 
 

  𝑛(𝑟) = 𝑛0 (1 −
𝑎𝑟2

2
)                                                                                             (12) 

   
   

where n_0 is the maximum refractive index, r is the distance, a is the positive (the 
gradient) constant, a function  of wavelength and it depends on the specific gradient  
index (GRIN) material [25]. 

In order to mimic the condition of the real world, we  choose the value of parameters 
as follows: n0 = 1.6, a = 0.7499, r = |�⃗⃗�|  = 1.  With the help of AI and Octave, we 
calculate numerically the refractive index (12) and obtain the result n(�⃗⃗�) = 1.0001.  This 
result indicates a vacuum space-time. Variation of refractive index with distance is shown 
in Fig. 1.  
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Fig. 1 Variation of refractive index with distance. 

 
As we see from Fig. 1, it shows us the value of the refractive index decreases 
(increases) when the distance increases (decreases). 
 
To simplify the complexity of the numerical computation of the field strength tensor, we 
will compute numerically one of the components of the field strength tensor i.e. the the 

magnetic  f ield, �⃗⃗⃗� = ∇⃗⃗⃗ × 𝐴, where 𝐴 is the magnetic (vector) potential (the other 
component is the electric field). The choice of the magnetic field accommodates the 
divergence-less vector field as we mentioned previously where the Clebsch variables are 
related. 
 
We choose the value of parameters as follow: 𝑓𝜃 = 299792458, 𝑡 = 1, 𝜌 =
𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(−5,5,1000). We take the value of the speed of light in a vacuum c = 

299792458. We obtain the relation of ρ versus �⃗⃗�  as shown in Fig.  2 below. As an example, 
take a maxima peak point of the amplitude ρ = 0.55853, it is related to magnitude of the 

magnetic field |B⃗⃗⃗| = 0.10452. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Fig.  2 The graph of ρ versus �⃗⃗� 
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We consider that ρ = 0.55853 is related to the weak field because  φφ∗  = ρ2  = 0.558532  
= 0.3119  << 1.   This is the reason why the weak field can be interpreted as a vacuum 
space-time. 
 
Discussion and Conclusion 

The treatment of geometrical optics as an Abelian U (1) local gauge theory has 
consequences in that we have the concepts of the phase, the gauge potential, and the field 
strength tensor in geometrical optics as in Maxwell’s theory. The formulations of the 
phase, the gauge potential, and the field strength tensor in geometrical optics are related 
to the refractive index. 
 
It is natural to assume that a vacuum space-time is the weak-field limit. This vacuum 
(weak-field)  space-time is related to the space-time of the infinite radius from  sources  (a  
charge,  current). We  could  say  that a vacuum (weak-field) space-time implies the 
isotropic space-time. We show numerically that a vacuum space-time and the weak field 
are indicated by the values of the  refractive  index,  n(�⃗⃗�)  =  1.0001,  and  the  amplitude, 
ρ2 = 0.3119 << 1, respectively. We choose the parameters in order to give the results that 
mimic the real condition in nature. 
 
We see from eq.(8) that the phase is related to the refractive index. We could say that it is a 
new formulation of a Clebsch variable of the phase related to the refractive index. This phase 
related to the refractive index satisfies the divergence-less property of any vector field. The 
divergence-less property of any vector field means that there is no source to give rise to such 
a vector field. However, we could approximate ”there is no source” with ”the weak field 
related to the infinite radius from the source”. 
 
The infinite radius from the source implies the isotropic space-time where the direction 
does not matter. In the isotropic space-time, the value of the refractive index is 
determined solely by the distance from the origin.  That  is why the property of a scalar 
field is isotropic (well-defined) for an infinite distance (radius) from the origin or the 
source. The property of a scalar field as a function of space-time (physics) seems likely in 
harmony with the property of space-time (geometry).  A space-time could be locally 
anisotropic but globally isotropic (the distribution of matter-energy in the universe is 
assumed to be homogeneous).  
 
In the case of time-independent, the relation between the phase and the refractive index 
(8) implies that the phase transformation reduces to the refractive index transformation 
(9) where the transformation is deter- mined solely by the value of the distance from the 
origin or the sources. If we substitute eq.(12) into eq.(9), we obtain the relation below 
 

  𝑞(�⃗⃗�) = 𝑋 ∫ 𝑛0 (1 −
𝑎𝑟2

2
) 𝑑3𝑟

𝑟2

𝑟1
  .                                                                              (13) 

    

It means that as the distance decreases (increases) then the values of the refractive  
index and the phase increase (decrease). The refractive index is a number and the 
phase is an angle (in radians or degrees). Probably, we could interpret the refractive 
index as a winding number (a topological invariant) if the refractive index is an integer 
number. 
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Referring to our numerical result for calculating the weak field, a maxima peak point 

of the amplitude ρ = 0.55853  is  related  to magnitude of  the  magnetic  field|�⃗⃗⃗�| = 
0.10452. This very small but non-zero value of the magnetic field has a deep    
consequence related to the topological field (Chern-Simons) theory where the Chern-
Simons action could be related topological object (helicity or knot). Thus, a weak 
subset field could result in the existence of the geometric optical  helicity  or  knot  
[23,26].  This  will  be discussed in a separate article. 
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