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 First-principles calculations are increasingly crucial in searching for 
new materials with customized properties or new functionality. 
First-principles calculations are superior in speed and cost, and 
comparable to experiments in terms of accuracy. Two-dimensional 
(2D) ferromagnetism materials were successfully fabricated 
experimentally in atomic thin films of CrI3. 2D intrinsic 
ferromagnetism with perpendicular magnetic anisotropy energy 
(PMAE) is an encouraging applicant compatible with high-density 
magnetic storage applications. In this study, spin density functional 
calculations are investigated on the magnetic anisotropy energy 
(MAE) in 2D monolayer ferromagnetic CrI3 using a first-principles 
electronic structure calculation. We include the MAE part 
calculation from the magnetocrystalline anisotropy energy (MCAE) 
that comes from the spin-orbit coupling (SOC). In the present 
calculation, the MCAE part, in addition to a usual scheme of total 
energy (TE), was evaluated using a grand-canonical force theorem 
(GCFT) scheme. The MCAE of 2D monolayer ferromagnetic CrI3 is 
1.7 meV/unit cell and verified it has an easy-axis perpendicular to the 
crystal plane, which is a good agreement with experimental 
measurement. In the latter scheme, employing GCFT, we evaluated 
atom-resolved, k-resolved, and atomic k-resolved analyses for MCAE 
can be performed. From the GCFT result, the Cr atom indicates that 
it is the primary origin of PMAE in the atom-resolved MCAE. The 

negative MCAE contribution is in  points, and the positive MCAE 

is mainly placed at the line K 3 / 4KΓ− in the 2D first Brillouin 
zone. Our systematic calculation in this work may also help design 
an effective structure of monolayer CrI3 in new 2D material magnetic 
sensor and spintronic device designs. 

Copyright © 2023 Authors. All rights reserved. 

 

 

  

Introduction 

Over the centuries, science and technology as a whole have experienced rapid developments, 
and this development is also in line with how the field of materials science has developed. 
For thousands of years, science was pristine experimental, with metallurgical observations 

mailto:indra.pardede@fi.itera.ac.id


 Indonesian Physical Review. 6(1): 60-84 

61 
 

during the “age” (steel, stone, iron, and bronze). Then the theoretical model paradigm 
emerged and was generally characterized by formulating various "laws" in mathematical 
equations, such as the laws of thermodynamics, Newton's laws, and Maxwell's equations. 
But for numerous scientific difficulties, theoretical models become too involved or complex 
for analytical methods, and one has to start simulating. The third paradigm of computational 
science looked good on greatly prevalent with computer power some decades ago. Very 
good instances of this in materials science are molecular dynamics and density functional 
theory (DFT) simulation. Furthermore, a fourth scientific paradigm has emerged over the last 
some years due to the quantity of data produced by experiments and simulations. This is 
science driven by (big) data. It is appropriate and progressively prevalent in the field of 
materials science as well and, in fact, has caused the becoming known of a recent lot of 
materials informatics [1][2].  

For the forecast, the properties of materials from the arrangement of their atoms are the main 
target of materials science. The first-principles calculation can make the most reliable 
material properties prediction [3]. Magnetic phenomena are important in science and 
technology. Magnetic materials are at the core of many modern technological applications. 
For example, magnetic materials are used for sensors, data storage, and biosensor [2]. For 
example, magnetic random-access memory (MRAM) is a type of random-access memory. In 
fundamental, MRAM uses the effect of magnetoresistance for the reading process [4]. 

Several research areas have rapidly advanced over the past decade, including electronics, 
batteries, photonics, and catalysis for two-dimensional (2D) materials. These developments 
have led to the constant discovery of new 2D materials, supported by the attractive and 
tuneful properties of atomic thin crystals. 2D materials have also opened up opportunities 
for scheming materials with customized and good properties [5]. The finding of 2D 
magnetism wide opens the gates for discovering spintronic and sensor nanodevices [6][7]. As 
a platform for studying new physical phenomena, 2D magnetic materials have interesting 
research concerns whole the world. In the manner of the Mermin-Wagner theorem, thermal 
inconstancy can efficiently remove 2D magnetism in the isotropic Heisenberg design at a 
limited temperature. On the other hand, magnetic anisotropy can discard this constraint, 
thus giving one to get 2D intrinsic ferromagnetism. As a consequence, magnetic anisotropy is 
a condition component of 2D intrinsic ferromagnetism [8]. After continuous research, several 
2D magnets were successfully fabricated experimentally. In 2017, 2D intrinsic 
ferromagnetism was discovered experimentally, i.e., including the monolayer CrI3 [9] and 
the bilayer Cr2Ge2Te6 [10]. 

Since 2D materials can be considered atomic thin films, for applications in high-density 
magnetic storage of, 2D intrinsic ferromagnetism with perpendicular magnetic anisotropy 
(PMA) is an encouraging worthy candidate [8]. In this case, magnetic anisotropy is a 
magnetic energy that is conditional on the direction of magnetization [11]. Investigation of 
newly discovered 2D magnetics escorted by elevated transition temperatures and of 
considerable size PMA is still significant defiance and essential for fundamental research and 
future applications. The high MAE also indicates excellent potential for applications in low-
energy spintronics [7]. Consequently, much effort has been invested in investigating 2D 
intrinsic ferromagnetic PMA [8]. 

First-principles calculations are increasingly crucial in searching for recently developed 
materials with customized properties or else new functionality. First-principles calculations 
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are superior in speed and cost and comparable to experiments in terms of accuracy [5]. 2D 
monolayer ferromagnetic CrI3 is one of the magnetic materials with easy-axis anisotropy 
perpendicular to the atomic plane. It was forecast out of the first-principles computation that 
2D monolayer ferromagnetic CrI3 has perpendicular magnetic anisotropy properties 
[12][13][14].  A similar conclusion was as well informed by the experimental measurements 
[9]. In their performance, the specifics of magnetic properties, such as total magnetic 
anisotropy, magnetization, and spin polarization were examined, as a potential application 
for spintronics. However, the detail of the origin of magnetocrystalline anisotropy energy 
(MCAE) and the contribution from the Cr atom and I atom was not discussed in their 
investigation. In the investigation of MCAE, atom-resolved or k-resolved MCAE has been 
helpful to analyse magnetic anisotropy. That analyzing the k-resolved contribution can 
facilitate us to explain the local k-space contribution to positive or negative MCAE by 
relating it to the electronic structure. This may be basically because the physical amount of 
MCAE is susceptible to the occupation of electrons close to the Fermi level. Furthermore, k-
resolved MCAE is as well important to explain the effect of electric fields on the MCAE 
[15][16]. 

In this work, spin density functional calculations are performed on 2D monolayer 
ferromagnetic CrI3 with the same structure as the experimental measurement [9]. This paper 
is structured as follows and contains a theoretical background of MAE. In particular, the 
primary origin of MAE arises from the spin-orbit coupling (SOC). In the successive section, 
explain the computational method that we used in the calculation. The detail of MAE and 
electronic structure calculation will be described. The results are reported in the next section, 
followed by discussions. It will start with the result and discussion we presented on MAE 
contribution from the MCAE arising from the SOC. The source of PMA was entirely in terms 
of the use of the atom-resolved and k-resolved endowment. Next, we continue to discuss the 
results of the electronic structure monolayer ferromagnetic CrI3 system. Finally, in the next 
section, we summarize all results. This research is related to the application of the spin 
density functional theory (SDFT) scheme to calculate the MAE of 2D monolayer 
ferromagnetic CrI3 in Car-Parrinello Vanderbilt Oda (CPVO) code [17][18][19], which makes 
us fully and scalar relativistic ultrasoft pseudopotentials and plane waves basis [18][20]. The 
aim is to develop a particularly robust predictive model for calculating MCAE in 2D 
monolayer ferromagnetic CrI3. This study also explains the mechanism of the magnitude of 
MCAE values and aims to stimulate experimental efforts toward 2D magnetic materials for 
new spintronic devices.  

Theoretical Framework  

Density Functional Theory 

Investigating the electronic structures of atoms, molecules, and solids can be used DFT. DFT 
is used to simplify solving the Schrodinger equation for many-electrons interaction. 
The core quantity of DFT is the electron density [21]:  

ˆ( ) ( )n n=  r r                                                           (1) 

where   is a many-body state. In 1964 Hohenberg and Kohn made the DFT full quantum 

mechanical approach which enables the expression of the electronic Hamiltonian as a 
function of electron density [22]. Their work is DFT underlying on consists of two main 
theorems frameworks. The first theorem the total ground-state energy of a many-electron 
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system is a function of the electron density ( )n r . In the second Hohenberg-Kohn theorem 

for the many-electrons system, the function for the minimum total energy is equivalent to 
the ground state energy at the ground state density.                                                                           

The usefulness of DFT was reached in 1965 when Kohn and Sham identify a mean-field 
theory for non-interacting electrons in an effective potential [23]. The basic concept given by 
Kohn and Sham can be described as the energy function as split into three parts [23], 

     
( ) ( )

T d d xc

n n
E n n E n


= + +

−
r r

r r
r r

,                                            (2) 

where presented the kinetic, Hartree, and exchange-correlation energy. The kinetic energy 

of the external field is displaced by an effective external field effv (named the Kohn-Sham 

potential). The exchange-correlation energy ( xcE ) is the contribution of the kinetic energy of 

the electron correlation effect from every lost quantum effect. 
Which is an effective potential given by [23],  

( )
( ) ( ) 2 d ( )eff ext xc

n
v v v


= + +

−
r

r r r r
r r

                                      (3) 

with 
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( )
( )

xc xc
xc

E T
v

n





+
=r

r
.                                                                (4) 

This leads to the Kohn-Sham equation which is an effective one-electron equation [23], 
2

eff ( ) ( ) 0i iv   − + − = r r ,                                                       (5) 

where i are the energies of the one-electron orbitals i . It should be underlined that the 

Kohn-Sham equations have to be completed self-consistently because effv the hinge on 

electron density n is determined using the one-electron orbital i  [23]: 

2

1

( ) ( )
N

i

i

n r 
=

= r .                                                              (6) 

Now, the total energy is not the sum of the orbital energies 
N

ii
E  but it may be 

calculated by the resulting density using [23],   

 
1
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[ ] d d ( ) ( )d .

i F
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i xc xc

i
E

n n
E n E n v n




=
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
= − + −

−
  

r r
r r r r r

r r
                           (7)                                                        

 
Magnetocrystalline Anisotropy Energy 

Magnetic anisotropy energy (MAE) is the total energy difference between two different 
magnetization directions. MAE is performed based on the theoretical framework of DFT. 
The MAE part is performed by contributing the magnetocrystalline anisotropy energy 
(MCAE) that arises from the spin-orbit coupling (SOC). The MCAE part will be evaluated 
on the total energy (TE) difference and the grand-canonical force theorem (GCFT). 
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Total energy difference  

The investigated MCAE is included in the spin-orbit interaction on the basis of distinction in 
total energy among the magnetization parallel (in-plane) and perpendicular (out-of-plane) 
to the crystal plane. The total energy is conditional on the magnetization heading. The 
heading of magnetization is expressed as [001], [100] or [010]. Finally, the MCAE is acquired 
by arresting the total energy distinction among the in-plane and perpendicular 

magnetization directions as 
[100] [001]

tot totMCAE E E= − . The [100] (x-axis directions) denote the 

in-plane magnetization heading, and the [001] (z-axis directions) denote the perpendicular 
magnetization heading to the crystal plane [24].  

We use an SDFT to investigate the TE originating from SOC. The TE SDFT[ ( ), ( )]E n r m r  in the 

SDFT is described as a function of spin density ( )m r and electron density ( )n r .  effV̂  is the 

effective electron potential that is defined through self-consistently as a function of ( )m  

and n. In effV̂ , the SOC potential shall be contained as an expression SOC LV  =  , with L 

and   are an orbital angular moment vector and SOC constant, respectively. Ignoring the 

SOC i  without hinge on the easy axis of the magnetization vector. The total energy of 

SDFT ( SDFTE ) is can be presented as [24], 

occ.
* 2

SDFT 0 ext

1
( ) ( ) ( ) ( )

2
i i

i

E d d n V
 

=  −   + 
 

 r r r r r r  

xc

1 ( ) ( )
[ , ] ,

2

n n
d d E n U


+ + +

−
r r

r r m
r r

                                         (8) 

where xcE  represents exchange-correlation energy as a function of m  and n . extV  describes 

potential out of the inner core and nuclei states. U  indicates the interaction energy among 
the inner core or nuclei states [24]. 

Grand-canonical force theorem 

Otherwise, MCAE is calculated using a different method, and the approach is built on the 
magnetic force theorem. It is based on a GCFT [25][26][27]. As an outcome, we may examine 
the atom-resolved, k-resolved, and atomic k-resolved endowments of MCAE rationally. In 
the GCFT method, the MCAE is calculated in view of the SOC acquired by implementing a 
two-step procedure. First, with a completely self-consistent calculation for the collinear case 
with a scalar-relativistic pseudopotential (without SOC) to get the distribution of the spin 
moment and charge density in real space. Second, with the freezing potential of the electron 
density, SOC is managed as a nuisance in a non-self-consistent calculation using a fully-
relativistic pseudopotential at different magnetization directions, i.e., each direction of 
magnetization is in-plane and perpendicular with the crystal plane. 

The total energy from the simple force theorem is can be represented as [24],  

occ.
ˆ ˆf,m

SDFT [ , ]i

i

E E n U= +  + m
m ,                                                   (9) 

occ.
f,0 0

SDFT [ , ]i

i

E E n U= +  + m ,                                                  (10) 
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occ. occ.
ˆ ˆ ˆf,m f,m f,0 0

SDFT SDFT SDFT i i

i i

E E E   = − = − m ,                                   (11) 

occ.
ˆ ˆf,m

SDFT i

i

E = m ,                                                                           (12) 

where 
ˆf,m

SDFTE  represents the total energy difference by the system without SOC within the 

force theorem. [ , ]E n m  participates of the spin density ( )m r  and electron density ( )n r  

that are persevering self-consistently without the potential of SOC. m̂

i  and 0

i  indicates the 

eigenvalues for the potential ( effV̂ ) with and without SOC, respectively. 

The MCAE is estimated as the total energy deviation among the distinct direction of 

magnetizations. Give thought to the magnetization directions of 1m̂ and 2m̂ , the MCAE is 

can be represented by [24], 

1 2

occ. occ.
ˆ ˆ

MCAE i i

i i

 = − 
m m .                                                   (13) 

To detach the MCAE to the atom-resolved or k-resolved endowment, we examine the total 
energy of SDFT is can be represented by [24], 

ˆ ˆ ˆgf , m

SDFT ( ),i i

i

E f  = −m m
                                                    (14) 

where 
ˆ

if
m

 are electron occupations with SOC,   chemical potentials, and 
ˆ

i
m  eigenvalues 

for the potentials eff
ˆ( )V with SOC. 

Using the explicit nation of ( )i = k, [24], 
ˆ ˆ ˆgf,m m m

SDFT ( ) ( )E f  = − k k
k ,                                                        (15) 

 
2ˆ ˆ ˆgf,m m m

SDFT ( ) ( ) IaE I f   = −  k k k

k

                           (16) 

( )
2ˆ ˆ ˆgf,m

SDFT ( , ) Ia

a

E I f  =  m m

k k kk                                       (17) 

where the k-resolved or atom-resolved endowment hinges on 
ˆ

f m

k
 and   also 

ˆm

k
. Ia  

indicate the a’th atomic orbital on atom I. Both of them are the k-space distribution 
ˆgf ,

SDFT ( )E m
k  and the atomic distribution 

ˆgf ,

SDFT ( )E Im  probably susceptible for  . However, the 

primary characteristic of these distributions can get in 
ˆm

k
. Accordingly, the k-space 

variation 
ˆgf ,

SDFT ( )E m
k  should have symmetries in the system.  

 
In the GCFT approach, we can see the contribution of MCAE values from atom-resolved, k-
resolved, and atomic k-resolved. Atom-resolved MCAE or k-resolved MCAE is specified 
from the total energy distinction among the [100] or [010] and [001] magnetization 
directions using the equation [24]: 

gf,[100] gf,[001]

SDFT SDFTMCAE( ) ( ) ( ),I E I E I = −          (18) 

gf,[100] gf,[001]

SDFT SDFTMCAE( ) ( ) ( ),E E = −k k k           (19) 
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gf,[100] gf,[001]

SDFT SDFTMCAE( , ) ( , ) ( , ),I E I E I = −k k k         (20) 

 
where I is atomic-resolved, k is k-resolved, and (I, k) is atomic orbital k-resolved. From the 
calculation of k-resolve MCAE, it can be shown that the contribution of positive and 
negative values is only observed in certain areas in the 2D first Brillouin zone [24]. Thus, the 
MCAE is negative or positive, indicating that the magnetization wick is easily 
perpendicular or in-plane with the crystal plane [11]. 

Perturbation Theory of Spin-Orbit Interaction  

The spin-orbit Hamiltonian ( SOCH ) is  L S . The L S  term may be described according to 

[21], 

1
( ) .

2
z zL S L S L S+ − − + = + +L S     (21) 

The z-component of the spin operator measures along the strength of the spin heading, thus 
[21], 

1

2
zS  = +       (22) 

1
,

2
zS  = −       (23) 

where   and   represent the eigenstates of the spin operator with spin orientations in 

the 'up' and 'down' directions, respectively. 

In the case of the transition metal 3d-electron magnetism, the SOC constant,  , is less than 

100 meV. This value is much smaller than the bandwidth (several eV). So, it can treat the 
SOC as a perturbation. Then, taking into account the perturbation theory, the shift in the 

worth of the Eigen energy nE  to the second-order term due to SOC is given by [21], 

2

2 ,n

k n n k

n k
E n n

E E
  




=  +

−


L S
L S           (24) 

where nE  and kE  are the corresponding Eigen energy values and n  and k  represent the 

eigenstates of the unperturbed Hamiltonian. 

The unperturbed state has a well-defined spin character (in contrast to the perturbed ones) 
and is suitable for considering states such as [21],  

, ,, ,n i n i n

i

n c d = k           (25) 

where  denotes spin, the index i runs over the d-orbitals 2 23
( , , , ,xz yz xyz r
d d d d

−
and 2 2 )

x y
d

−

and in the matter of the periodic tract, k denotes a point in the first Brillouin zone.  

In the matter of robust exchange separation, the spin-up band is nearly completely filled, 
and empty entry states are included in the spin-down band. The only SOC among spin-up 
states will be considered. The contribution can be separated into two parts, that is, SOC 
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among parallel spin states and SOC among foreign spin states. The approximate MCAE of 
the SOC among the spin-up states can be given by [26], 

o,u u o

2 2

o u o u2

ˆ ˆ

MCAE ,
z xl l


 

−


−

k k k

k k k k
             (26) 

with 
u


k  and 

o


k  denote the energy of unoccupied and occupied states. uk  and ok  represent 

unoccupied and occupied states with ˆ
zl , ˆ

xl   the angular momentum operators and wave 

vectors k . The SOC among the occupied and unoccupied states with the same (different) 

magnetic quantum number employing the operator ˆ
zl  ( ˆ

xl  and ˆyl ) contributes positively 

(negatively) to MCAE [26][21]. The nonvanishing angular momentum matrix elements 
among the d-orbital states are listed in Table 1. 

 
Table 1. Elements of the nonvanishing angular 

momentum matrix among d-orbital states [26]. 

Matrix elements  L  value 

zxz L yz  1  

2 2

zx y L xy−  2 

2

xz L yz  3  

xxy L xz  1 

2 2

xx y L yz−  1 

2

yz L xz  3  

yxy L yz  1 

 
2 2

yx y L xz−   1 

 

Computational Details 

The focus of this research is to examine the structure of the low-temperature rhombohedral 

of monolayer CrI3, which has a Curie temperature of 61 K [28] and a monolayer CrI3 of 45 K 

[9]. The experimental lattice parameters of the two-dimensional (2D) CrI3 are a = b = 6.859512 

Å, c = 19.765290 Å, α = β = 90°, and γ = 120 ° [29]. The monolayer CrI3 crystal structure 

consists of three atomic layers. The middle layer between the two iodine atom layers is a Cr 

atom layer, where the six nearest neighboring iodine atoms surround each Cr atom. The top 

view of the monolayer CrI3 structure forms a honeycomb arrangement of Cr atoms. In 

addition, every Cr atom is encircled by six nearest neighbors I atoms, arranged in a side 

portion of the CrI6 octahedral. An illustration of the crystal structure of the monolayer CrI3 

can be seen in Figure 1. 
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Figure 1. (a) Schematic illustration of the top view of the monolayer CrI3 structure, forming a 

honeycomb arrangement. Chromium atoms are orange, while iodine atoms are green. The region 
bounded by the black line is the unit cell structure of the monolayer CrI3. It consists of two Cr atoms 
and six I atoms. (b) Model structure of the monolayer CrI3 for calculation. Both sides have a vacuum 

layer with a thickness of 17.96 Å. (c) Side view of the monolayer CrI3 with the ferromagnetic 
configuration. (d) The 2D first Brillouin zone of the hexagonal lattice, the region bounded by the red 

line, is the irreducible region of the 2D first Brillouin zone [30]. 

 
In the calculation, we performed in CPVO code [17][18][19], which uses scalar and fully 

relativistic ultrasoft pseudopotentials and a plane waves basis [20][19]. In our calculation, 

use the SDFT scheme on the first-principles calculation with the Perdew-Burke-Ernzerhof 

(PBE) function in generalized gradient approximation (GGA) for the exchange-correlation 

energy [31]  to investigate the electronic structure of the 2D monolayer ferromagnetic CrI3. 

We make use of scalar relativistic calculations for the structural relaxation whilst retaining 

the in-plane lattice constant by making use of a 5 5 1   k-mesh used in the first Brillouin 

zone sampling for monolayer CrI3 [32]. An in-plane lattice constant of 6.85951 Å was used as 

the in-order value in the experiment [29]. The energy cut-offs of plane waves basis are 48 

Ryd and 457 Ryd for the wave function and density, respectively [18]. We calculated MAE in 

2D monolayer ferromagnetic CrI3, which contribution from the MCAE originates from the 

SOC. We analyze the MCAE in both outlines. First, the MCAE is performed built on the TE 

distinct among the magnetization along the in-plane and perpendicular to the crystal plane. 

Second, the MCAE is performed on the basis of GCFT. In the GCFT scheme, we completed 

the atom-resolved, k-resolved, and atomic k-resolved contributions of the MCAE. 

The experimental measurements show that CrI3 is a ferromagnetic insulator with a relatively 
high Curie temperature of 61 K [28]. In 2017, 2D monolayer CrI3 was successfully synthesized 
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in experiments. The experimental measurement results showed that the insulator is 
ferromagnetic by an easy-axis perpendicular to the crystal plane and a Curie temperature of 
45 K [9]. Thus, the intrinsic ferromagnetic bulk of CrI3 can be well maintained even though 
the layers are arranged up to the monolayer boundary. The results in this study indicate that 
the 2D monolayer CrI3 is a ferromagnetic intrinsic magnetic material with an easy-axis 
perpendicular to the crystal plane. This is consistent with experimental measurements [9] 
and also the results of previous theoretical results [12]. The total magnetic moment of the 

monolayer CrI3 is mainly contributed by Cr atoms, which is around 2.83 B  for each Cr 

atom. This is a good agreement with the experimental measurement of 3.0 B [9] and as well 

with the previous theoretical results of 2.9 B [33], 3.0 B [12], 2.9 B [34], and 3.1 B  [35]. 

Result and Discussion 

Magnetic Anisotropy Energy on 2D Monolayer Ferromagnetic CrI3 

In this section, we will discuss more the magnetic properties of 2D monolayer ferromagnetic 
CrI3. The calculations are carried out using first-principles calculations which use scalar-
relativistic and fully relativistic pseudopotentials and plane waves basis, using GGA for the 
energy exchange-correlation function. In the calculation, MAE was evaluated by considering 
MCAE originating from SOC. The MCAE was calculated using the two methods of the TE 
difference and the GCFT. In the GCFT schema, we performed the atom-resolved, k-resolved, 
and atomic k-resolved contributions to the MCAE. We were using k-mesh 5×5×1 for MCAE 
calculations. In addition, in this study, the magnitude of the magnetic moment of each Cr 

atom was 2.83 B , and the MCAE value of the 2D monolayer ferromagnetic CrI3 was 

evaluated based on the calculation of TE and GCFT. The results are shown in Table 2. From 
Table 2, we can see that from the results of the MCAE calculation, there is a good agreement 
between those two methods. The positive MCAE indicates that the monolayer CrI3 has an 
easy-axis perpendicular magnetic anisotropy to the crystal plane. This follows the previous 
experiment measurement [9] and the previous theoretical results. To match our results in 
detail with the previous theoretical and experimental ones, we summarized the lattice 
constant, magnetic moment, MCAE, and type of pseudopotential in Table 3. 

 

Table 2. The MCAE value is calculated based on the TE, GCFT, and Bruno’s formula. 

Material 
MCAE (TE) (meV/unit 

cell) 
MCAE (GCFT) 
(meV/unit cell) 

MCAE (Bruno’s formula) 
(meV/unit cell) 

monolayer CrI3 1.72 1.75 0.28 
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Table 3. Comparison of MCAE values of 2D monolayer ferromagnetic CrI3 with previous theoretical 
and experimental results. The lattice constant, magnetic moment of Cr atom, MCAE of 2D monolayer 
ferromagnetic CrI3, and type of pseudopotential. 

  
Reference a (Å) 

Crm ( B ) MCAE 
Type of 
pseudopotential 

Experiment 
Huang et al. 
(2017) 6.873 3.00 

easy-axis 
anisotropy, 
perpendicular to 
the crystal plane - 

Patil et al. (2019)  6.859 - - - 

Computational 
calculation 

W. Zhang et al. 
(2015) 7.006 3.00 685.5 µeV/Cr PAW: GGA-PBE 

 

Lado & Rossier 
(2017) - 3.00 0.65 meV PAW: PBE 

 Guo et al. (2018) 6.867 2.93 0.79 meV 
all-electron FP-
LAPW: GGA-PBE 

 

Webster & Yan 
al. (2018) 7.008 3.00 803.65 μeV/Cr PAW: GGA-PBE 

 

Jiang et al. 
(2018) - - 0.9 meV/Cr  - 

 

C. Huang et al. 
(2018) - - 1.5 meV/unit cell GGA-PBE 

 Pei at al. (2019) 7.000 3.00 737 μeV/f.u. GGA-PBE 

 

Gudelli at al. 
(2019) 6.867 3.20 0.678 meV/fu 

PAW: GGA+U-
PBE 

 

Pizzochero et al. 
(2020) - 3.00 

0.39; 0.90; and 0.70 
meV 

GGA-PBE; meta 
GGA-SCAN; dan 
hybrid Fock-
exchange/density
-functionals-
HSE06 

 Xu et al. (2020) 7.006 3.10 0.990 meV/Cr PAW: GGA-PBE 

 

Zhao et al. 
(2021) 6.982 - 0.6 meV/f.u. 

PAW: 
HSE06+SOC 

  This work 6.859 2.83 1.7 meV/unit cell GGA-PBE 

 
     Furthermore, in calculating the MCAE using the GCFT method, we performed a calculation  
     of the MCAE values of atom-resolved, k-resolved, and atomic k-resolved. The results of the  
     MCAE values of atom-resolved can be seen in Figure 2, where a positive value indicates that  
     the perpendicular MCAE and the negative indicates the in-plane MCAE. We can see that   
     from Figure 2 shows the contribution of the primary positive MCAE value from the Cr atom.  
     In addition, in the 2D monolayer ferromagnetic CrI3, the I atom also contributes to  
     perpendicular MCAE. 
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Figure 2. Atom-resolved MCAE 2D monolayer ferromagnetic CrI3. 

 
     To elucidate more about the origin of the positive value of MCAE in 2D monolayer   

        ferromagnetic CrI3, we calculated the k-resolved MCAE and atomic k-resolved MCAE in the  
     2D Brillouin zone for each Cr and I atom system. The results are shown in Figure 3 and  
     Figure 4, respectively. The energy ranges from red to blue, indicating positive to negative  
     contribution to the MCAE. We can see that, in the 2D Brillouin zone, only certain regions  
     contribute to MCAE (other regions are almost absent). From this k-resolved MCAE, it can be  
     found that only certain regions in the 2D Brillouin zone contribute to positive and negative    
     MCAE. 
 
 
 
 
 
 
 

 
 

Figure 3. k-resolved MCAE 2D monolayer ferromagnetic CrI3. 
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    Figure 4. Atomic k-resolved MCAE 2D monolayer ferromagnetic CrI3, (a) Cr (1) atom, (b) Cr (2) atom, 
(c) I (1) atom, (d) I (2) atom, (e) I (3) atom, (f) I (4) atom, (g) I (5) atom, and (h) I (6) atom. 

 
 

Next, we calculated the MCAE 2D monolayer ferromagnetic CrI3 by using Bruno’s formula.     

MCAE is proportional to the orbital moment as in Bruno’s formula o BMCAE / 4 ,m =   where 

o o o[001] [100]m m m = −  (the difference between the perpendicular and in-plane orbital 

moments), B  is Bohr magneton and ξ  is the SOC constant [36]. The values of orbital moments 

are reported both for [100] and [001] directions, and the result of an orbital moment for the Cr 

atom and I atom are shown in Figure 5 (a). These orbital moment values are a good agreement 

with previous theoretical results [37]. Therefore, we can estimate the MCAE using Bruno’s 

formula by the results of the orbital moment. We used the SOC constants of 58 meV for the Cr 

atom in our calculations for Bruno’s formula. The MCAE results for monolayer CrI3 are shown 

in Table 3. The atom-resolved MCAE values from Bruno’s formula on monolayer CrI3 can be 

seen in Figure 5 (b), where a positive value indicates the perpendicular MCAE and a negative 

indicates the in-plane MCAE.  
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Figure 5. (a) Orbital magnetic moment ( om ) for each Cr and I atom in monolayer CrI3. (b) Atom-resolved 

MCAE from Bruno’s formula for 2D monolayer ferromagnetic CrI3.  

 

In order to explain the possible origin of the PMA, we investigated the band-filling effect for 2D 

monolayer ferromagnetic CrI3. The band-filling effect here refers to the changes in the Fermi 

level by reducing or increasing the number of valence electrons per unit cell. This estimation 

was finished by making use of the data of GCFT. The result can be seen in Figure 6. The band-

filling effect here refers to the changes in the Fermi level by reducing or increasing the number 

of valence electrons. From the figure, we can see that MCAE behavior is dependent on band-

filling. In the 2D monolayer ferromagnetic CrI3, the actual Fermi energy area is not the top of 

MCAE. It shows that we could more distant increase the MCAE by changing the position of the 

Fermi energy.  

 

 

 

 

 

 

 

 

Figure 6. MCAE is a function of the number of valence electrons. Vertical dotted lines indicate the actual 
number of valence electrons in the unit cell. 
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  The contribution to the positive and negative MCAE can be attributed to certain coupling  
  pairs in the states above and below the Fermi energy by considering the second-order  
  perturbation theory, where in states near the Fermi energy, it is important to discuss the origin  
  of MCAE. To examine the details of the coupling pair near the Fermi energy, we plotted the  
  band structure curves of the 3d orbitals for each Cr atom and as shown in Figure 10. Based  
  on the analysis of the perturbation theory in equation (26) in the Theoretical Framework  
  Section, here we focus on the contributing states of the Cr-3d orbitals in the spin-up section, 
  because the majority of the spin-up areas of the Cr-3d orbitals are completely filled with spin-    
  states in the occupied states and unoccupied states. This is different from the endowment  
  states of the Cr-3d orbital in the spin-down area, where the majority of the spin-   
  down area of the Cr-3d orbital is completely filled in the unoccupied state region, so that is  
  less significant to determine the positive and negative contribution of MCAE values in the 2D  
  Brillouin zone for the 2D monolayer ferromagnetic CrI3 due to the SOC of the d- 
  orbital states in the spin-down states (see Figure 9).  
 
     Table 4. Positive and negative contributions to the MCAE values in the first 2D Brillouin    
     zone for the 2D monolayer ferromagnetic CrI3 due to the SOC of the d-orbital states. o is an    
     occupied state and u is an unoccupied state. 

Line in first Brillouin zone Matrix elements 

1/ 4 M−   ˆ, ,zo xz l u yz  

 2 2 ˆ, ,zo x y l u xy−  

 ˆ, ,xo xy l u xz  

 
2 2 ˆ, ,xo x y l u yz−  

 
2 2 ˆ,3 ,xo z r l u yz−  

M K−   
2 2 ˆ, ,zo x y l u xy−  

 
 ˆ, ,xo xy l u xz  

 2 2 ˆ, ,xo x y l u yz−  

 2 2 ˆ,3 ,xo z r l u yz−  

K 3/ 4K−   ˆ, ,zo xz l u yz  

 2 2 ˆ, ,zo x y l u xy−  

 ˆ, ,xo xy l u xz  

 2 2 ˆ, ,xo x y l u yz−  

 2 2 ˆ,3 ,xo z r l u yz−  

 
 
Furthermore, from these k-resolved MCAE results, we can clearly see the region in the 2D first 
Brillouin zone that contributes to positive or negative MCAE. Based on the analysis in Table 1 in 
the Theoretical Framework section, we summarize a list of possible d-orbital coupling pairs near 
the Fermi energy, as shown in Table 4. From Table 4, we can see that the results of k-resolved 
MCAE in the area in the first 2D Brillouin zone that contribute to negative MCAE is greater 
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than the contribution of positive MCAE in each line 1/ 4 M−  , M K− , and K 3/ 4K−  . At 

the line 1/ 4 M−  , the contribution of the negative MCAE is 3.7, and the contribution of the 

positive MCAE is 3. At the line M K− , the contribution of the negative MCAE is 3.7, and the 

contribution of the positive MCAE is 2. At the line K 3/ 4K−  , the contribution from the 
negative MCAE is 3.7, and the contribution from the positive MCAE is 3. This is not in 
accordance with the results of k-resolved MCAE obtained in Figure 3, where the line 

K 3/ 4K−   contributes positive MCAE, so to explain, it is necessary to include spin-flip 
interactions [26] to determine the possible coupling pair contributions. 

Electronic Structures and Optical Properties on 2D Monolayer Ferromagnetic CrI3 

In this section, we will further discuss the density of state (DOS), band structure, and optical 
properties of 2D monolayer ferromagnetic CrI3. The results of the DOS curve it is shown in 
Figure 7 and Figure 8 for the d-orbital on the Cr atom and the p-orbital on the I atom, 
respectively. Based on the results of the DOS curve in Figure 7 and Figure 8 show that in the 
near Fermi level, the conduction band is dominated by the weakly hybridized state of Cr-3d 
with the I-5p state for both spin directions, and the valence band state in the spin-down 
direction is dominated I-5p orbitals. More interestingly, the Cr-3d orbital in the occupied state is 
overlooked in the spin-up direction, and the spin-down Cr-3d orbital is completely in the 
unoccupied state. This is also consistent with the previous theoretical results [38]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Total and partial density of state of the 2D monolayer ferromagnetic CrI3 of the d-orbitals on 

the Cr atom for (a) Cr (1) atom and (b) Cr (2) atom. 
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    Figure 8. Total and partial density of state of the 2D monolayer ferromagnetic CrI3 of  
     the p-orbitals on I atom for (a) I (1) atom, (b) I (2) atom, (c) I (3) atom, (d) I (4) atom, (e) I (5) atom, and 

(f) I (6) atom. 
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In this study, we found that in the DOS curve, which is shown in Figure 7 and Figure 8. At the 
near Fermi level, in the Cr-3d atom state with the I-5p atom state, the spin-up conduction band 
is dominated. On the other hand, in the Cr-3d atom state, the spin-down conduction band is 
primarily filled. Furthermore, the spin-up valence band is contributed from the state of the Cr-
3d atom with the combination of the I-5p, and the I-5p atom, mainly contributing to the spin-
down valence band. This result is also consistent with previous theoretical results [33]. In 
addition, hybridization among the Cr-3d and I-5p orbitals confirms the superexchange 
interaction among the Cr-3d orbitals and the neighboring I-5p orbitals [38]. 

Next, we found that from the band structure, 2D monolayer CrI3 has a spin-up band gap energy 
value of 1.21 eV and a spin-down band gap energy value of 1.99 eV, this is consistent with the 
previous theoretical result, and the summary results can be seen in Table 5. The band gap 
energy value is obtained from the difference in the energy value between the maximum valence 
band energy value and the minimum conduction band energy value [39]. The maximum 
valence band is contributed by the I atom of the px, py, and pz states and the combination of the 
d-orbital states of the Cr atom. In contrast, the minimum conduction band is contributed by the 
d-orbital state of the Cr atom and the combination of the p-orbital states of the I atom. 

 
   Table 5. Comparison of the band gap energy value of the 2D monolayer ferromagnetic CrI3 with the   
   previous theoretical result. The lattice constant, magnetic moment of Cr atom, band gap energy of 2D  
   monolayer ferromagnetic CrI3, and type of pseudopotential.  

Reference  a (Å) 
Crm ( B ) band gap (eV) Type of pseudopotential 

J. Liu et al. (2015)  7.079 3.44 1.09 PAW: GGA-PBE 

Wei-Bing Zhang et al. 
(2015)  7.006 3.00 

1.143 (spin-up); 
2.109 (spin-down) PAW: GGA-PBE 

Hongbo Wang et al. (2016)  7.000 - 1.1 PAW: GGA-PBE 

Guanxing Guo et al. (2018)  6.867 2.93 
1.23 (spin-up); 1.90 
(spin-down) 

All electron FP-LAPW: 
GGA-PBE 

Lucas Webster et al. (2018)  7.008 3.00 0.89 PAW: GGA-PBE 

Zheng et al. (2018)  7.000  - 0.88 PAW: GGA-PBE 

Jiayong Zhang et al. (2018) 7.000 3.00 1.19 GGA-PBE 
Aroop K. Behera et al. 
(2019)  6.963 3.00 0.8 GGA+U-PBEsol 

Zewen Wu et al. (2019)  6.978 - 
1.124 (spin-up); 
2.169 (spin-down)  PBE-GGA 

Vijay Kumar Gudell et al. 
(2019)  6.867 3.20 0.81 PAW: GGA+U-PBE 
Qin-Fang Xu et al. (2020) 7.006 3.10 1.18 PAW: GGA-PBE 

This work  6.859 2.83 
1.21 (spin-up); 1.99 
(spin-down) GGA-PBE 
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Figure 9. Electronic structure of 2D monolayer ferromagnetic CrI3 from the d-orbitals on the Cr atom for 
(a) spin-up Cr (1), (b) spin-down Cr (1), (c) spin-up Cr (2), (d) spin-down Cr (2). The main components of 

the Cr 3d orbital ( 2 2, , , ,yz xz xyx y
d d d d

−
and 2 23z r

d
−

), for spin-states filled with, 
yzd are marked in red-

orange, xzd  are marked in gold color, 2 2x y
d

−
 are marked in dark green, 

xyd are marked in dark blue, 

and 2 23z r
d

−
 are marked in red. The color of the bar indicates the type of orbital. 
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Figure 10. Electronic structure of 2D monolayer ferromagnetic CrI3 from p-orbitals on the I atom for (a) 
spin-up I (1), (b) spin-down I (1), (c) spin-up I (2), (d) spin-down I (2), (e) spin-up I (3), (f) spin-down I 
(3), (g) spin-up I (4), (h) spin-down I (4), (i) spin-up I (5), (j) spin-down I (5), (k) spin-up I (6), dan (l) 

spin-down I (6). The dominant components in the I-5p orbitals are xp , yp , and zp , for spin-states 

filled with 
yP  are marked in gold, zp  is marked in dark blue, xp  is in red. The color of the bar 

indicates the type of orbital. 

 

Conclusion 
In summary, the focus of this research has been on the investigation of magnetic properties, 
such as MAE, built on the SDFT scheme. We discussed the details of the MCAE on the 2D 
monolayer ferromagnetic CrI3. In the calculation, we considered that the contribution to the 
MAE part is performed by the MCAE originating from the SOC. The MCAE part was 
calculated on the basis of the TE and the GCFT. From the GCFT schema, we performed the 
atom-resolved, k-resolved, and atomic k-resolved contributions to the MCAEs. For 
comparison, we add the results of previous theoretical and experimental measurements of a 
2D monolayer CrI3 ferromagnetic in the results of the section Magnetic Anisotropy on 2D 
Monolayer Ferromagnetic CrI3. From the MCAE calculations based on the TE and GCFT, 
confirming that it has a good agreement value, the results are shown in the section Magnetic 
Anisotropy on 2D Monolayer Ferromagnetic CrI3. This agreement makes it possible to carry 
out further analyzes of atom-resolved MCAE and k-resolved MCAE on 2D monolayer 
ferromagnetic CrI3. Atom-resolved MCAE shows that the primary positive contribution to 
MCAE gets in from the Cr atom. Furthermore, by the results of k-resolved MCAE, we can 
clear that the region in the 2D first Brillouin zone that contributes to MCAE is positive or 

negative. The negative MCAE contribution is at  points, and the positive MCAE is mainly 

placed at the line K 3 / 4K−   in the 2D first Brillouin zone. Based on the analysis in the 
section Theoretical Framework, the authors summarize a list of possible d-orbital pairs close 
by the Fermi energy, as shown in the section Magnetic Anisotropy on 2D monolayer 

ferromagnetic CrI3. In the GCFT scheme, we can clarify the possible origin in terms of the 
details of the electronic structure. In addition, on the basis of the GCFT method, other 
emerging phenomena at the ferromagnetic/oxide interface, such as the Rashba effect, are 
possible to investigate, which may be calculated in future research. The Rashba effect at the 
interface is responsible for producing an effective field for the magnetization switching in 
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spin-transfer-torque MRAM devices [40][41] and spin-to-charge conversion [42]. Our 
systematic calculation in this work may also help design an effective structure of monolayer 
CrI3 systems in new 2D material as a magnetic electrode in MRAM or 2D material in 
magnetic sensor and spintronic device designs. 
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