Indonesian Physical Review

Volume 5 Issue 1, January 2022 P-ISSN: 2615-1278, E-ISSN: 2614-7904

Review of Characteristics and Properties of Fe₂O₃/SiO₂ As Water Pollution Prevention

Balada Soerya¹, Jaya Edianta¹, Siti Lailaturofi'ah¹, Aniendita Ningtyas¹, Fitri Suryani Arsyad^{1,*}, Dedi Setiabudidaya¹ and Siti Sailah¹

¹ Department of Physics, Faculty of Mathematics and Natural Sciences, Sriwijaya University. E-mail: <u>fitri_suryani@unsri.ac.id</u>

ARTICLE INFO

Article info: Received: 12-12-2021 Revised: 01-02-2022 Accepted: 07-02-2022

Keywords:

*Fe*₂O₃; *SiO*₂; *Water Pollution*; *Characteristics*

How To Cite:

Balada, S., Jaya, E., Siti, L., Aniendita, N., Fitri, S., A., Dedi, S., Siti, S. Review of characteristics and Properties of Fe₂O₃/SiO₂ as Water Pollution Prevention (2022). Indonesian Physical Review, 5(1), 36-56.

DOI:

https://doi.org/10.29303/ip r.v5i1.131

Introduction

The existence of water on earth is very abundant and has a vital role in the source of life for every living creature. In managing water resources, water pollution is one of the problems faced by world researchers [1]. The spread of pollutants such as pharmaceutical and private care products, poly and perfluoroalkyl substances, biocides, essential metals, dyes, radionuclides, plastics, nanoparticles, and pathogens square measure among the pollutants of major concern [2]. In addition, the release of heavy metal ions in water is of substantial concern because of their very harmful effects on human health [3]. Some vital metals such as copper (Cu), cadmium (Cd), zinc (Zn), lead (Pb), mercury (Hg), arsenic (As), silver (Ag), Cr (Cr), iron (Fe), and noble metal (Pt) will cause injury to ecosystems and organisms like aerobic damage,

ABSTRACT

The existence of water on earth is very abundant and has a vital role in the source of life for every living creature. In managing water resources, pollution is one of the issues world researchers face. This article reviews the characteristics and methods of synthesizing Fe_2O_3 and SiO_2 materials to prevent water pollution. The strategies administrated antecedently square measure vapor deposition, microemulsion, solvothermal, coprecipitation, sol-gel, and hydrothermal. The formation of fine quality nanoparticles with controlled size associate degreed size distribution square measure typically achieved by selecting an applicable solvent mixture and varied parameters like temperature, pressure, and time interval.

Copyright © 2022 Authors. All rights reserved.

endocrine disorders, and even death [4]. Universally, researchers use several methods in dealing with decontamination and wastewater, namely biological, physical, and chemical [5]. The benefits of science and technology also play an important role in addressing water quality, for example, using best management practices (BMPs) for hydrology, machine learning algorithms to improve water quality modeling and remote sensing techniques in monitoring water quality [6]. However, most modern remediation methodologies involve nanocatalysts, adsorption, absorption-reduction, and photocatalytic degradation processes. Nanocatalysts are widely used in water pollution control because they are easy to synthesize and environmentally friendly [7]. But on the other hand, applying adsorption materials is one of the best methods to remove various contaminants from water, including heavy metals [4]. Some of the benefits of surface assimilation applications, namely the area unit high absorption capability, energy-saving, and environmental friendliness [8]. Some heavy metals in the environment have been successfully analyzed and removed using several materials as shown in Table 1. Adsorption applications are promising because they are easily synthesized in conventional materials such as activated carbon and biomaterials. Synthesis of advanced materials such as silica and magnetite ferrite are attractive components of materials that can be applied as adsorption, photocatalysis, and degradation of harmful molecules or metals gift in water. By utilizing nanotechnology, the fabrication of silica and magnetite ferrite materials can increase the functionality of the material in eliminating water pollution, because it will increase the high expanse furthermore as glorious mass transfer. [9], [10]. Based on theory and an in-depth literature review, we are interested in discussing more silica and magnetite ferrite materials.

Heavy metals	Characteristics	Material adsorbtion	I	Ref.		
			pН	$T(^{0}C)$	adsorbtion Q(mg/g)	
Pb(II) a nd Cd (III)	comes from industry, gasoline pipelines, and water distribution, with friction value	Activated Carbon	5.5-6	56.8	9.30	[11]
Al (III) and Fe (III)	for and Pb(II) ions is 0.1 mgL-1 can come from gas purification as a result of the reaction. It is toxic and, when ingested, can cause diseases such as anorexia, Alzheimer's, convulsive crises, liver and kidney disorders.	Chitosan film	4.5	25	140.2	[12]
Cr (III)	Chromium compounds derived from modern chemical waste cause nausea, diarrhea, liver failure, dermatitis (eczema), internal bleeding (bleeding), and respiratory problems.	Bio- adsorbtion	5	30	218.5	[13]
As (III)	Arsenic (As) is a very toxic substance in the aquatic environment. In natural water, arsenic exists mostly in two oxidation states: As(III) and As(V). The dominant arsenic species in groundwater is As(III)	Cu ₂ FeO ₄ / PMS	6.7	Room temp	63.9	[14]
Cu (II) and Zn (II)	Copper(II), zinc(II), and cobalt(II)n ions are some of the most common heavy metal ions in modern industries such as mining, metallurgy, battery production, and metal plating. These heavy metals can multiply in organisms	Impregnated materials	3.16	Room temp	440 mmol/kg and 32 mmol/kg	[15]

Table 1. Review characteristics and parameters for adsorbtion of some heavy metals

Development of Research on SiO₂ and Fe₂O₃ Materials

Seeing research development on advanced materials in water pollution, SiO₂ and Fe₂O₃/Fe₃O₄ materials are more interested in, and research on them always develops every year. The result of research on SiO₂ and Fe_2O_3 materials into several applications can be seen in Table 2. A study on SiO₂ states that SiO₂ has the characteristics of a high surface area that can increase the mechanical strength of material products by utilizing nanotechnology [10]. In photocatalyst immobilization applications, SiO₂ is widely used for the stability and dispersion of core particles [16]. Doping SiO₂ on advanced materials can benefit high mass transport values and better selectivity for target pollutants [9]. In addition, the silicon dioxide core will act as an electron trapping center which can reduce the recombination rate and contribute to a rise within the photocatalytic rate [17]. In addition, SiO_2 also attracts attention because of its cheap and practical nature in applying water pollutant adsorption. Research [18] succeeded in synthesizing SiO₂ nanoparticles as an effective adsorbent to remove active metal pollutants Cu^{2+} and NO³⁻. SiO₂ has been investigated and combined with several other compounds such as graphite, TiO₂ Carbon, MnO, ZnO, Ag, Fe₂O₃, and Fe₃O₄. We are interested in the advantages of Fe₂O₃ compounds, which are easy to obtain and synthesize and are environmentally friendly. Fe₂O₃ nanoparticles will show sensible photocatalytic degradation activity against totally different waste organic pollutants below visible irradiation. [19].

Several previous studies have reported some of the advantages of combining SiO₂ with Fe₂O₃, Research [20] succeeded in synthesizing photocatalytic nanocomposites to degrade methylene blue pollution in water. The magnetic nanocomposites they prepared were well dispersed in aqueous solutions and quickly recovered for recycling in multiple cycles and preventing the secondary decay of treated water. These composites perform well in sunlight and have great potential for inclusion in existing water treatment systems due to their high efficiency and low energy requirements. Schematic of Fe₃O₄@SiO₂@C₃N₄/TiO₂ nanocomposite research results [16] Can utilize more photons from sunlight, thereby increasing the photocatalytic degradability of organic dyes, the principle finds potential applications in environmental remediation. Detailed characterization of SiO₂ catalyst of α -Fe₂O₃@MnO₂ decreased catalytic activity on metal leaching process to phase composition change and intermediate adsorption at the active site [21].

Material	Synthesis metho	od Pollutant targets	Application	Ref.
SiO ₂ /graphite	The Hummers	Pb (II) ions	Adsorbsi	[22][23]
nanocomposite	technique through			
	the chemical			
	reaction of natural			
	carbon powder			
nano γ -Fe ₂ O ₃ based	solution	Acid Red 27 and Acid	Removal of ionizable	[24]
magnetic cationic	polymerization	Orange 52	aromatic pollutants	
hydrogel				
Fe ₃ O ₄ /SiO ₂ /TiO ₂	coprecipitation and	methylene blue,	Decontamination of	[25]
	sol-gel o	ciprofloxacin, norfloxacin,	polluted water	
	° °	and ibuprofen	-	

Table 2. The development of SiO₂ and Fe₂O₃ applications as advanced materials in overcoming water pollution

α -Fe ₂ O ₃ nanoparticles	Green synthesis	anionic and cationic dyes and dicholor ophenols	photocatalytic to decontaminate	[19]
			polluted water with different organic pollutants	
γ-Fe ₂ O ₃ /SiO ₂ / C-TiO ₂	coprecipitation and sol-gel	methylene blue	photocatalytic degradation of organic pollutants	[20]
α-Fe ₂ O ₃ Nanoparticles	polymeric precursor and hydrothermal	Rhodamine B (RhB) and atrazine (ATZ)	decontamination of polluted water	[26]
Fe ₂ O ₃ /TiO ₂ functionalized biochar	One-step pyrolisis	methylene blue	catalyst for dyes degradation	[27]
Fe ₃ O ₄ @SiO ₂ @g- C ₃ N ₄ /TiO ₂ nanocomposite	Solvothermal and hydrothermal	Cationic and anionic dyes	adsorbsi	[16]
ZnO.SiO ₂ Nanocomposite	co-precipitation	methyl orange dye	the photo- degradation of the dye component	[17]
SiO ₂ Nanoparticles	simple extraction and precipitation method	Cu ²⁺ and NO ³⁻	Adsorbsi	[18]
SiO ₂ with γ- Fe ₂ O ₃ /MnO ₂	Multistep and hydrothermal	Phenol	Singlet oxygen- dominated degradation	[21]

Development of SiO₂ and Fe₂O₃ Utama Main Ingredients

Silica and iron sand/magnetite materials attracted our attention because they are easily synthesized and can be quickly processed from natural materials found in nature. It is in line with the advantages of the Indonesian area, which has several locations and raw materials that can synthesize silica and ferrite materials. The silica (SiO_2) material has been successfully synthesized by the coprecipitation method using the essential ingredients of Lapindo mud extract in Sidoarjo with a purity level of 96.9 wt% [28]. Several other natural materials have also succeeded in acting as caps or the main ingredient in synthesizing materials, such as strawberry fruit extract as a capping agent for the synthesis of mesoporous Fe₃O₄@SiO₂hydroxyapatite nanocomposite using sonochemical methods [29]. Biogenic silica from bamboo leaves was also successfully synthesized using the sol-gel method application of photocatalytic composites for degradation of methylene blue with a very good semiconductor energy bandgap [30]. Several other plants such as sugar palm peel, pineapple leaf, and orange peel are useful as the main raw material in the manufacture of silica material which has the potential for adsorption, photocatalysis, degradation, and [31], [32]. One study also reported that one of Indonesia's natural resources, namely, rice husks has the potential to synthesize SiO₂ with a high purity level of 99.258% with coprecipitation techniques [33].

On the other hand, iron or magnetite sand also has the same advantages as silica, which is easy to synthesize through the main ingredients found in nature. Several methods of green synthesis or hydrothermal have succeeded in using natural extract materials in producing quality iron and magnetite sand, such as Euphorbia peplus Linn leaf extract [34], Chromolaena odorata root [35], euphorbia cochinchinensis [36], dan Carum carvi L. Seeds Aqueous [37].

Analysis Study of SiO₂ and Fe₂O₃ Combination Synthesis Methods

Various strategies have been developed for the synthesis of iron oxide MNPs. It includes synthesis using vapor deposition, microemulsions, solvothermal conditions, and coprecipitation [38]. In the study conducted by Sobhanardakani et al., they were able to come through columnar structures while not employing a catalyst for the primary time through a plasma-enhanced chemical vapor deposition technique to manage the expansion direction of nanostructures at air mass and cold by reactive victimization species generated within the plasma. Then, they studied the potency of removal (RE) of Hg(II) and Cr(VI) ions on Fe₂O₃@SiO₂ skinny films as new adsorbents beneath varied experimental conditions. In reverse microemulsion, the coprecipitation method happens simultaneously with the condensation method of Si(OR)_{4-x}(OH)_x. Precipitation of Fe(OH)₃ affects the porous shell construction. Analysis of Hongbu Yu et al. stated that Au α -Fe₂O₃@SiO₂ core-shell NPs with adjustable size and composition were ready by microemulsion technique. The relevant characterizations showed that the introduced Fe_2O_3 not solely resulted in shut contact with the Au cluster and suppressed its growth throughout oxidization; however, it conjointly enlarged the consistency of the SiO_2 shell by influencing its condensation [39]. Solvothermal methods are generally used to synthesize metallic elements, metal oxide materials, polymer composites, and others in various forms, such as polycrystalline in the form of nanopowder, including single crystals. Based on the research of Nadar et al., high pressure during the preparation of the solvothermal method in an autoclave produces samples in the size of nanoparticles in the form of spheres dispersed in silica. Fe₂O₃ with spherical geometry has a particle size ranging from 10-20 nm. each lattice in the FSWI and FSST samples having a width of 0.23 nm shows α -Fe₂O₃ associated with hkl (123) in the plane of the polymorphic phase. [40]. The properties of the core with double shell nanoparticles obtained by the sol-gel methodology and hardened at 600°C were investigated. Once heat treatment, the α -Fe₂O₃ part is made as a photocatalyst shell. The Fe₃O₄ phase (magnetic core) is changed to become incredibly crystalline, finally forming α - $Fe_3O_4/SiO_2/\alpha$ -Fe₂O₃ core-shell structure with higher stability and better magnetism. Power saturation price [41]. Table 3 explain about review of the combined synthesis method of SiO₂ and Fe₂O₃.

Substitution	Methode of Synthesis	Review of Result	Ref.
Synthesis of Mesoporous	Hydrothermal	mesoporous nanoparticles α -Fe ₂ O ₃ , exhibiting a	[42]
a-Fe ₂ O ₃ Nanoparticles by		slim pore size distribution and a twenty-node	
Non-ionic		median pore size) were obtained.	
preparation of SiO ₂ @Ni-	Hydrothermal	highlight the potential applications of the	[43]
Al layered double		SiO ₂ @Ni-Al LDH composites in associate degree	
hydroxide composites		automotive business like shock absorbers,	
		engine mounts, and clutches.	
γ-Fe ₂ O ₃ @SiO ₂ @TiO ₂	Solvothermal	The assembly demonstrates sensible	[44]
photocatalyst induced by	and Sol-Gel	photocatalytic activity and magnetic	
magnetic dipole		recyclability.	
interactions			
photochemical synthesis	Hydrothermal	The excited state of pigment generates	[45]
of Au nanodots on α-		additional photoelectrons and contributes to	
Fe ₂ O ₃ @Reduced graphene		reducing Au ³⁺ ions to Au° metal nanodots on	
chemical compound		the surface of the α -Fe ₂ O ₃ @RGO hetero-nano	
nanocomposite		structure.	

Table 3.	Review	of the	combined	synthesis	method	of SiO ₂	and Fe ₂ O ₃

[46]	The photo-decolorization study shows that the	Hydrothermal	electrochemical
	TiO_2 -Fe ₂ O ₃ nanocomposite may be a smart		performance of TiO ₂ -
	photocatalyst for the organic decolorization of		Fe ₂ O ₃ nanocomposite
	Titan Yellow (TY) and acid-base indicator (MO).		-
[47]	The hydrophobic shell protects the iron carbide	Hydrothermal	A hydrophobic FeMn@Si
	core from oxidation by water generated during	5	catalyst increases olefins
	FTS and shortens water retention on the catalyst		5
	surface, resisting the side reactions associated		
	with water.		
[48]	showed high metal oxide dispersion on the silica	Sol-gel	material properties of
	matrix and the absence of section segregation	0	$SiO_2/TiO_2/Nb_2O_5$ by sol-
	(SBET).		gel synthesis method
[49]	The experimental results showed that the Fe_2O_3	Hydrolysis	carbonyl sulfide and
	cluster increased the chemical action-reaction	5 5	carbon disulfide over
	result.		Fe ₂ O ₃ cluster:
[50]	the stable reversible capability of Fe ₂ O ₃ @MIL-	MOF (Metal-	Fe ₂ O ₃ @ MIL-101(Fe)/C
	101(Fe)/C conductor is 710 mÅhg ⁻¹ , and might	Organic	derived from
	be maintained at 662 mAhg-1 when two	Framework)	metalorganic frameworks
	hundred cycles with the retention of 93.2%.	,	0
[51]	four hundred cycles of Fe ₂ O ₃ -coated TiO ₂	Atomic Layer	Fe ₂ O ₃ modified TiO ₂
	Photocatalyst (~2.6 nm) showed a superb	Deposition	prepared by atomic layer
	degradation potency of 97.4% in ninety min,	(ALD)	deposition
	well on top of the performance of pure TiO_2	. ,	-
	powder of solely 12.5%.		
	* 7		

Hydrothermal Method

Based on the development of Fe₂O₃/SiO₂ research in terms of controlling water pollution, the synthesis method, one method that has succeeded in synthesizing Fe₂O₃/SiO₂ as a water pollution control material is the hydrothermal synthesis method with a good level of homogeneity without reducing the characteristics of the two materials [7]. Hydrothermal synthesis of α -Fe₂O₃ and SiO₂-based nanocatalysts to form carbon-carbon bonds has been successfully carried out by [52] and Zanthoxylum rhetsa fruit extract [7].

Hydrothermal synthesis has benefits over different ways like a comparatively low price, nontoxicity, environmentally friendly precursors, and straightforward procedures. The formation of excellent quality nanoparticles with controlled size and size distribution may be achieved by choosing an acceptable solvent mixture and numerous parameters like temperature, pressure, and time interval [53].

Based on the research of Gholamrezaei et al.[54], the hydrothermal approach was chosen because of its low Cost, high efficiency, and potential for mass production. Given the fact that the uniqueness of the nanostructure is highly dependent on the size, dimensions, and shape. Hydrothermal is a proprietary process for preparing nanostructures with specific and controlled shapes, whereas other techniques such as sol-gel and sonochemistry largely provide nanoparticle morphology. The hydrothermal method provides a suitable morphological orientation. Under different special conditions, for example, high temperature and pressure, this approach produces different shapes in situ and forms several morphologies as nanoparticles, nanorods and nanoplates are obtained. Our method for Ag2Te synthesis is very simple, low Cost, and can be improved by using non-toxic precursors and solvents (TeCl4 as Te precursor). The synthesized material will be further processed into a photodegradation application material for methyl orange solution. As a result, the lamp emits a mixture of UVA, ranging from 320 to 400 nm and UVB with a wavelength of 290–320 nm, and emits radiation of 13.6 and 3.0 W, respectively; it is free of ozone and radiation is encapsulated into a quartz tube, which is adrift in a methyl orange solution located in the center of the reactor [54].

Pivert et al.,[55], prepared ZnO NanoWire material grown on civil engineering samples by a two-step hydrothermal method at 350°C for 30 minutes to remove residual water in its porous structure. Hydrothermally first, their samples were impregnated with buffer solution (C= 0.01 M) Zn(Ac)² (zinc acetate dihydrate, 99%, VWR) in absolute ethanol (99.9%, VWR). The impregnation (short duration) was repeated four times, followed by thermal annealing at 350°C for 30 min. Then, a second step consisted of hydrothermal growth of ZnONW Cunanan autoclave containing an aqueous mixture of 0.05M methenamine (HMTA, 99%, VWR) and 0.05 M Zn(NO₃)² (zinc nitrate hexahydrate, 98%, Sigma-Aldrich) at 90°C. C for 4 hours. This step is useful for removing hydroxide residues and increasing ZnO crystallinity which can be a photocatalytic material for purifying acid red 14, methylene blue, and methyl orange water [55]. Yongshan Ma et al's research results [56] successfully synthesized ternary composites using the hydrothermal synthesis method. With this method, the photoelectrochemical measurement results show that the photocurrent performance of the ternary composite photocatalyst is superior to that of binary composites or NH₂-PD₁, MoS₂, or pure TiO₂. NH₂-PD₁/TiO₂/MoS₂ exhibited excellent photocatalytic activity and high stability [56].

In research, Makarchuk [57] provides info on organic dyes' sorption capability and removal potency by saponite sorbents, magnetic liquids, and nanocomposites. MCS 2, 4, and 7 were the foremost effective sorbents. That is, the sorption capability of MCS with relevancy all dyes inflated with increasing magnetic iron-ore content from 2-7% by weight. However, modification of saponite by magnetic iron-ore in AN quantity of 100% by weight caused a decrease within the sorption properties of MCS 10. the info obtained area unit following the characteristics of the porous structure of the nanocomposite.

The removal potency of mineral inexperienced, Congo red, and Indigo carmine, as an example, by MCS 7 was 3, 6, and 2.5 times on top of that of the saponite clay. The relative MCS 7 absorptions of mineral inexperienced, Congo red, and Indigo carmine exceeded the iron ore surface assimilation values of 9, 3, and 3.5 times, severally (Table 4). Thus, a synergistic result was ascertained for the ready magnetic nanocomposite sorbent material [57].

Sorbent	Malachite Green		Congo	Congo red		Indigo carmine	
	at, mg/g	X, %	at, mg/g	X, %	at, mg/g	X, %	
Saponite	105.7	26.4	30.7	10.2	62.1	20.7	
MCS 2	159.1	39.8	73.0	24.3	110.3	36.8	
MCS 4	283.2	70.8	126.9	42.3	124.1	41.4	
MCS 7	324.5	81.1	176.9	59.0	148.3	49.4	
MCS 10	86.8	21.7	46.1	15.4	51.7	17.2	
Fe ₃ O ₄	36.7	9.2	59.6	19.9	44.8	14.9	

Table 4. The ratio of Fe_3O_4 and SiO_2 materials [57].

Table 5. Reporting Fe₂O₃ content as calculable by Energy Dispersive X-Ray visible radiation qualitative analysis (EDXRF) of Fe₂O₃/SiO₂ catalyst synthesized by three different strategies. The values measured samples altogether were found to be at intervals $\pm 6\%$ of the supposed Fe₂O₃ content of 15% by weight. It shows quantitative dispersion overall 3 cases. However, the dispersion properties of the active elements, particularly the physical and chemical properties

of the spread iron chemical compound supported by the adopted producing technique, may be understood from the results of more characterization [40].

Sample	Preparation Method	Sample Abbreviation (1000° C calcined)	Fe ₂ O ₃ content* (wt,%)	N2-BET Surface Area (m2/g)	Average Pore Radius (Rp)# (nm)
SiO ₂	Commercial	SiO ₂	-	249.5	12.91
Fe ₂ O ₃ /SiO ₂	Polyol	FSP	15.8	122.8	9.04
Fe ₂ O ₃ /SiO ₂	Wet-	FSWI	14.9	126.3	12.26
	impregnation				
Fe ₂ O ₃ /SiO ₂	Solvothermal	FSST	14.5	74.7	11.88

Table 5. The ratio of Fe₂O₃ and SiO₂ materials [40].

The Nitrogen-BET expansion of the samples is shown in Table 5. The area of the empty SiO₂ BET decreased from ~249 m²/g to ~125 m²/g for the FSP and FSWI samples ~75 m²/g for the FSST samples. It causes the Nitrogen-BET measurement unit to be lower than the Fe₂O₃/SiO₂ catalyst than the unit area of the empty SiO₂ support area oxidized at high temperature, and Fe₂O₃ deposition occurs on the SiO₂ surface [40].

Analysis of the Properties and Characteristics of SiO₂ and Fe₂O₃

Silicon dioxide (SiO₂) is the most plentiful constituent of the layer and has several polymorphs. Underneath environmental conditions, every chemical element atom in silicon oxide is encircled by four O₂ atoms [58]. In 1961 silicon-oxide could be a porous solid. This porous structure is said to the extent the smaller the silicon oxide pore size leads to the larger extent so that the surface assimilation ability will increase. Additionally, silicon oxide has distinctive properties that are not owned by alternative inorganic compounds, like inert properties, sensible surface assimilation, and natural process properties, straightforward to switch with high chemical compounds, and may be used for preconcentration or separation of analytes as a result of the method of binding the analyte to the silicon oxide surface is natural. Reversible. Silicon oxide created from rice husks has many blessings compared to mineral silicon oxide. Wherever rice husk silicon oxide has finer grains, is additional reactive, will be obtained simply at a comparatively low price and is supported by the supply of plentiful and renewable raw materials [59].

Iron sand is ore within the type of sand usually found in nature mixed with sand. Iron sand contains iron minerals with a reasonably high concentration. Iron sand is created thanks to the erosion of natural rocks that contain iron minerals, which happens thanks to the method of destruction by weather and rain that then accumulates and is washed away by waves of brine or watercourse water. River flow. The content of magnetic minerals in iron sands like magnetic iron-ore (Fe₃O₄), iron ore (α -Fe₂O₃), and maghemite (γ -Fe₂O₃) open opportunities to be utilized or developed as industrial raw materials [60]. Table 6 Shows some of the properties of SiO₂ and Fe₂O₃ materials in various material applications.

Research [66] explained that the metal-silica gel chemical agent would absorb the substrate. The surface assimilation of alkoxyl radicals to colloid fertilized with Na metal will bring the substrate and negatron donor nearer. The employment of colloid as support additionally will increase each substrate's effective extent and ambit and, therefore, the metal within the pores

to decrease the activation entropy for negatron transfer. Isomers with internal steric resistance can modify additional thermodynamically stable conformers [67].

No	Materials	Characteristic	Value of research results	Ref.
1.	Me ₂ - CA-	Have good	It was stated that Me ₂ -CA-BTP/SiO ₂ -P showed efficient	[61]
	BTP/SiO ₂ -P	absorption ability	adsorption selectivity towards 241Am(III) above	
			152Eu(III) in a wide range of nitric acid and acceptable	
			adsorption kinetics work for adequate stability against	
			irradiation in HNO_3 solution. 1 and 3 M, thus	
			successfully separating 241Am(III) from the simulated 3	
			M HNO ₃ HLLW. More specifically, taking into account	
			the overall efficient performance of the adsorbent Me ₂ -	
			CA-BTP/SiO ₂ -P, which has great application potential to	
			separate MA directly from HLLW, and is expected to	
			form a modern and simplified MA separation process,	
			which is very meaningful for nuclear energy development.	
2.	SiO ₂ f/SiO ₂ ,	High thermal shock	The test results from the FEA and brazing equipment	[62]
۷.	as a silica	resistance, excellent	produced high-quality E-SiO ₂ f/SiO ₂ -Nb joints and the	[02]
	ceramic	ablation resistance,	shear strength reached 61.9 MPa.	
	matrix	and low thermal	sited strength reacted 01.7 wir a.	
	composite	conductivity		
3.	Conductive	Good electrical	Their study said that SiO ₂ nanoparticles are conductive to	[63]
0.	SiO ₂	conductivity due to	doped microwaves and have very efficient microwave	[00]
	Nanoparticl	heterogeneous	absorption. A large microwave reflection loss (RL) of	
	es	incorporation of (N,	55.09 dB. The enormous absorption of microwaves comes	
		C, and Cl) atoms on	from electrical relaxation to magnetic relaxation of the	
		the surface of SiO ₂	incoming microwave field.	
		nanoparticles	0	
4.	Silica	Can improve	The hygroscopicity of the modified wood is reduced, and	[64]
	nanosol	mechanical	the dimensional stability is improved. Possibly, the	
	(SiO ₂) on	properties and	hardness level of the ISB specimen increased by 43.65%.	
	rubber	thermal stability	Measurements using thermogravimetry (TG) showed	
	wood		that the incorporation of silicon slowed thermal	
			decomposition and increased the thermal stability of the	
			wood.	[(5]
5.	Type-N α-	Effective light	Results from DRIFT for nanocomposites show the active	[65]
	Fe ₂ O ₃	absorption, massive	chemical conversion kinetics of the redox catalytic effect	
	Semikondu	extent, distinctive	in CO_2 reduction and ethanol oxidation. After that,	
	ktor	surface properties,	evaluation of the photoelectrochemical CO ₂ reduction	
		and power stability.	performance of the nanocomposite was obtained	
			employing linear sweep voltammetry (LSV), and the	
			results showed a significant increase in initial potential (- 0.58 V) for the RGO (30 wt %) -SiO ₂ @a -Fe ₂ O ₃	
			nanocomposite.	
			nanocomposite.	

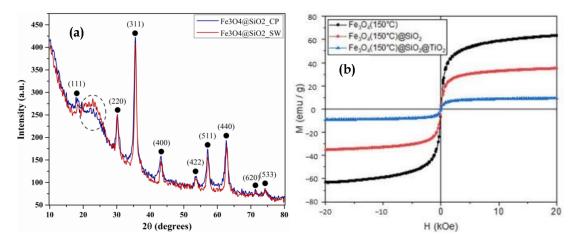
Table 6. Review of the properties of SiO₂ and Fe₂O₃ materials in various material applications.

Another study describes the optimization of the optical absorption of mixture nanoparticles $SiO_2@Au$ and $Fe_3O_4@Au$. Colloids with their distinctive optical properties can be transformative agents for several applications, notably medicine applications, wherever they'll activate unprecedentedly increased multimodal biosensing, bioimaging, and therapeutic functions. Within the analysis applied, it was found that the particle size and incident wavelength ranged from five to a hundred nm and 600-1200 nm, severally. Therefore, the shell thickness ranged from zero to 100 percent of the particle radius. The analysis additionally

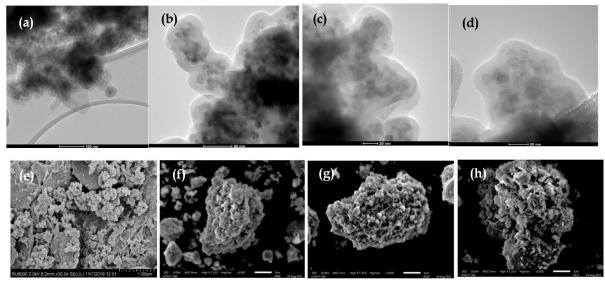
showed that the SiO₂@Au mixture showed several sharp absorption peaks from the Fe₃O₄ @Au mixture. It can be thanks to the loss of core Fe₃O₄, which contributes considerably to the absorption [66]. The expansion of SiO₂ on the water's surface at low temperatures is greatly expedited if the O₂ molecules area unit excited [68].

One crystalline half shows the formation of both diffractograms, verifiable through the physical phenomenon peaks characteristic for Fe₃O₄ at intervals the Fd-3m three-dimensional crystal system and associated Miller index. For both, the presence of an amorphous phase at an angle of 2θ of $20-25^{\circ}$ are going to be attributed to the silicon oxide layer within the nanoparticle what is more, by scrutiny the two samples; it'll be same that the microwave-assisted hydrothermal methodology is expounded to successive share of silicon oxide within the sample, as a result of the physical phenomenon phase within the sample magnetite silica SW incorporates a better intensity. Consequently, the crystallinity of this sample is reduced due to the intensity of the physical phenomenon peaks for sample magnetite silica CP is slightly exaggerated, shown in Figure 1. a [69].

The crystallite size for both samples was calculated using the Debye-Scherrer equation:


$$FWHM = \frac{K\lambda}{D\cos\theta'} \tag{1}$$

where FWHM is the full width at the half peak height, K is the Scherrer constant that varies between 0.89 and 0.94, λ is the X-ray wavelength, D is the crystallite size, and θ is the diffraction angle [69]. In this manner, the average crystallite size calculated as the mean value between all peaks is presented in Table 7. As expected, the crystallite size for the nanoparticles obtained through the hydrothermal method is larger due to the crystal growth under increased pressure and temperature conditions. Moreover, the crystallite size of the nanosystems is considerably smaller than other results available in the scientific literature [69].


Table 7. The crystallite size values for the $Fe_3O_4@SiO_2_CP$ and $Fe_3O_4@SiO_2_SW$ samples were calculated using the diffractograms' information.

Sample	description	D Average (nm)	Reference
Fe ₃ O ₄ @SiO ₂ _CP	Co-precipitation (CP)	9.31	[69]
Fe ₃ O ₄ @SiO ₂ _SW	Synth-wave (SW)	11.16	

Figure 1. b The magnetization curve shows that the particles obtained have superparamagnetic characteristics. The saturation magnetization value of each sample is 59 emu g⁻¹ for Fe₃O₄, 35 emu g⁻¹ for Fe₃O₄/SiO₂, and 17 emu g⁻¹ for Fe₃O₄/SiO₂/TiO₂. Their results showed that the saturation magnetization decreased with SiO₂ and TiO₂ layers. However, the addition can eliminate particles from the suspension and the external magnetic flux. At a temperature of 150°C, the synthesized sample showed the best saturation magnetization value and will be tested in other photocatalytic experiments [70].

Figure 1. (a) Characteristic XRD sample $Fe_3O_4@SiO_2$ samples (• – Fe_3O_4) [69], (b) Magnetization curves of Fe_3O_4 , Fe_3O_4/SiO_2 , and $Fe_3O_4/SiO_2/TiO_2$ nanoparticles synthesized by the microwave-assisted methodology at 150°C [70] reuse and permission from MDPI.

Figure 2. (a-d) Characteristic TEM sample Fe₃O₄@SiO₂ with synthesis core-shell [69], Characteristic SEM sample (e) fresh, (f) reused, (g) ultrasonic, and (h) with microwave CRL/SiO₂/Fe₃O₄/GO (3000× magnification) [71] reuse and permission from MDPI.

From Figure 2. (a-d), it can be seen that the sample groups of 1 to 10 nanoparticles surrounded by a layer of silica have a thick surface. Then, their TEM characterization results were used to confirm the core nanoparticle size and the shell layer thickness. The measured number of shell layers corresponds to the ImageJ computer code pattern. It is supported by the data obtained. a suitable size distribution is created, and the pattern is fitted according to the Gaussian image form obtained in the Original computer code [69]. In addition, the TEM images show the spherical shape of the magnetite nanoparticles. In this context, previous studies have reported the subcubic shape of the nanoparticles retained after silica coating, which is associated with the increased chemical stability afforded by silica coating. Therefore, it can be assumed that the current $Fe_3O_4@SiO_2$ core-shell nanoparticles have a long service life due to SiO_2 components [69]. Figure 2. e shows the results of the characterization of SEM $CRL/SiO_2/Fe_3O_4/GO_2$, which shows immobilization of CRL on the surface of GL-A-SiO₂/Fe₃O₄/GO and producing a very dense exterior of the $CRL/SiO_2/Fe_3O_4/GO$ accelerator. Their results showed that the sample was decorated with white granules with irregular shapes, which was not CRL. Figure 2. f-g depicts reused SEM imaging with microwave regeneration. After eleven cycles, the external acceleration morphology showed varying deposits and a fragmented surface, indicating that the CRL active site blockade occurred. In stark contrast to the freshly prepared and collectively determined CRL/SiO2/Fe3O4/GO morphologies, mechanical-related damage. The residue was presumed to be from a non-free substrate or an enzymatically synthesized unit of measurement; the new substrate was shunted into the active site of CRL/SiO₂/Fe₃O₄/GO. It indicates a reduction in the proportion of warmth units ($\approx 48\%$) with further use of the accelerator [71]. Post-ultrasonic (Fig. 2g) and microwave processing (Fig. 2h) on the CRL/SiO₂/Fe₃O₄/GO surface appeared to be reduced, indicating that the obstruction at the active catalyst site was less. The effect of the treatment on the CRL/SiO₂/Fe₃O₄/GO samples was extraordinarily effective, with a high heat synthesis temperature of 150% to reach the best at temperatures of 70.51% and 81.68%, respectively [71].

Advanced Application of SiO₂ and Fe₂O₃ Materials

Water pollution has emerged jointly of the foremost serious environmental problems worldwide. Utilizing Fe₂O₃ modified using TiO by modifying the surface layer by atomic layer deposition (ALD) with an ultra-thin layer [51] demonstrated a strong route for application in building efficient and stable photocatalysts. The efficiency of photocatalytic degradation is inversely proportional to the initial concentration of chloramine and directly proportional to the photocatalyst dose. In addition to using the modification of TiO to Fe₂O₃, the application of photocatalysts can be made with Single-atom catalysts (SACs) by utilizing the synthesis method of SiO and Fe, showing excellent performance on protons in the exchange of fuel cells against membranes, and showing great potential to be used as more practical application [72]. Apart from being a material that can overcome water pollution in the environment, several other applications of SIO₂ and Fe₂O₃ can also be useful in everyday life as shown in Table 8. We would like to inform you that this material is very attractive and functional with various benefits.

Materials	Synthesis method	Application	Value of research results	Ref.
Fe ₂ O ₃ /TiO ₂ heterojunction	Layer by atomic layer deposition (ALD)	Photocatal ysis	The results showed that the photocatalytic activity of visible light was very good for Modified Fe ₂ O ₃ treated with TiO ₂ powder. Four hundred cycles of Fe ₂ O ₃ -coated TiO ₂ photocatalyst (~2.6 nm) showed excellent degradation efficiency of 97.4% in 90 minutes, different from pure TiO ₂ powder, which was only 12.5%.	[51]
Stearic acid (SA) with SiO ₂ shell	Sol-gel	Energy Storage	Based on the analysis of thermal properties, the SATEOS6 apparatus shows very promising capabilities as a heat energy storage with melting and solidification temperatures at 70.37°C and 64.27°C and the latent heat of fusion with solidification of 182.53 J/g and 160.12 J / g, respectively. The maximum encapsulation efficiency was found at 86.68% for SATEOS6.	[73]

Table 8. Further applications of SiO₂ and Fe₂O₃ materials

Fe ₃ O ₄ @SiO ₂ /Pd	Solution	Tandem	The mixed five valence nanocatalyst offers easy	[74]
0/PdII	chemicals	Suzuki	magnetic separation and repeated use for multiple	
Nanocomposite	standard	clutch/tran	cycles. Catalyst exhibiting tandem reactivity together	
	Schlenk	sfer	with smooth separation capability.	
	techniques	hydrogena tion		
		reaction		
Chemical	Wet-	Thin Film -	The best CMP performance with minimum abrasive	[75]
mechanical	precipitation	SiO ₂	zeta potential (~13 mV) and abrasive secondary size	
planarization			(~130-nm size) can be achieved at a certain CMP	[76]
(CMP)			slurry pH (6.0) which is different from the synthesis termination pH (5.0). Characteristics	
Silicon dioxide	AFM and FFM.		The pH-sensitive of the superfine abrasive-based	
			SiO ₂ -film CMP slurry enabled the study of the	
			stability of the CMP slurry. In addition, further	
			chemical design studies to achieve low Cost (i.e., the	
			dependence of solid loading on CMP performance) and CMP self-stop function (i.e., polishing rate	
			selectivity between SiO ₂ -, Si3N4-, and poly-Si-film)	
			are of great importance. For various CMP	
			applications in nanoscale semiconductor devices.	
Au-	StÖber	Electroche	Innovative modified Au-PDA@SiO ₂ /rGO/GCE	[77]
PDA@SiO ₂ /rGO /GCE		mical Sensor	electrode for sensitive CEF detection. The proposed sensor can measure the target analyte at very low	
/ GCE		561501	concentrations with a detection limit of 1.0×10-10 M.	
			Compared to other CEF sensors, the modified	
			electrode exhibits a wide linear range long term	
			stability. Therefore, this electrochemical sensor can	
			successfully determine CEF in pharmaceutical preparations.	
SiO ₂ nanofiber	The Vapour	Malaria	The automated system demonstrated higher	[78]
filter	Liquid-Solid	Diagnosis	sensitivity (100%) and specificity (92.8%) for detecting	[. •]
	(VLS)	:fluorescen	Plasmodium falciparum from the blood of 274	
		t blue-ray	asymptomatic individuals in Kenya when compared	
			to the general rapid diagnosis test (sensitivity = 98.1% and specificity = 54, 8%)	
Au@SiO ₂		Transport	Unprecedented long-distance transport across one,	[79]
nanoparticles		electron	even three layers of Au@SiO ₂ at the junction, with a	
			cumulative isolation gap (silica) until the 29nm/NP	
			layer is reached, far beyond the limit.	
			Measured for standard quantum mechanical tunneling across the insulator (~2.5nm at 0.5-1V).	
			These findings open up a new interdisciplinary field	
			of exploration in nanoelectronics with broad potential	
			impact in fields such as electronic information	
6:0 M 0	<u> </u>	D 1	transfer.	[00]
SiO ₂ -MgO nanopartikel	Sol-gel	Polymer composite	The results show that the physical bond of the polymer has changed and increased its brittleness.	[80]
multiwalled		composite	These observations indicate that the MWCNT	
carbon			dispersion increases in the polymer matrix. It verifies	
nanotubes			our proposition that different types of fillers have	
(MWCNT)	Turo star 1 and	T ::1.:	different effects on mechanical properties	[22]
SiO ₂ nanocubes	Two-step hard- template growth	Lithium- ion	The crosslinked polymer gel composite electrolyte effectively encapsulates the electrolyte solution	[22]
	emplate 510 will	batteries	without solvent leakage and exhibits favorable	
			interfacial characteristics. In place of chemical	
			crosslinking, using mesoporous SiO ₂ nanoparticles	

			was more effective than non-porous SiO_2	
			nanoparticles to obtain good cycling performance in	
			release capacity, retention capacity, rate capability,	
			and high-temperature cycling stability.	
Mn ₃ [Co(CN) ₆] ² @		MRI and	The core-shell Cube nano can offer high-resolution	[81]
SiO ₂ Core-shell		optical	cell fluorescence imaging with two-photon excitation	
Nanocubes		imaging	(720 nm) or conventional fluorescence with 403- or	
			488-nm excitation.	
CuO@SiO ₂	HTC two-step	Catalyst/p	Hollow CuO@SiO2 spheres with an average diameter	[82]
	method	hotocatalys	of 240 nm and a thin shell about 30 nm thick were	
		t	synthesized using an inorganic SiO ₂ coating on the	
			surface of the Cu@C composite obtained by the	
			hydrothermal method. Two stages.	
Ag@SiO ₂		Sensor	The experiment was completed within 30 min with a	[83]
Nanoparticles		metal-	detection limit of 0.33 nM at the interference of high	
		enhanced	ether metal concentrations. The sensor was applied to	
		fluorescent	detect Hg ²⁺ do in water samples which obtained	
		(MEF)	recovery of more than 91%	
SiO ₂ /Eu	Sol-gel	Sensor	Coating the surface of SiO_2 with Eu ions, SiO_2	[84]
nanoparticles		luminescen	nanoparticles $(20 \sim 50 \text{ nm})$ were immersed in 50 mM	
		t	EuCl ₃ ethanol solution at 70 'C for 30 minutes so that	
			the Eu ions on SiO_2 were coated on the surface (this	
			material is from now on referred to as SiO ₂ /Eu)	

The adsorption application has several advantages technologically simple (simple equipment) and adaptable to many treatment formats, Wide range of commercial products, Wide variety of target contaminants (adsorption). But on the other hand, there are disadvantages such as Relatively high investment, Cost of materials, Nondestructive processes, Non-selective methods Performance depends on the type of material. While the silica gel application has several advantages Highly effective process (adsorption) with fast kinetics, Excellent quality of the treated effluent, Global Elimination but possibly selective depending on the adsorbent, Excellent ability to separate a wide range of pollutants, in particular, refractory molecules (CAC is the most effective material), CAC: efficient for chemical oxygen demand removal; highly efficient treatment when coupled to coagulation to reduce suspended solids, chemical oxygen demand, and color Sand: efficient for turbidity and suspended solids removal, Alumina: efficient for fluoride removal. But on the other hand, there are disadvantages such as a Requirement for several types of adsorbents, Chemical derivatization to improve their adsorption capacity, Rapid saturation, and clogging of the reactors (re-generation-costly), Not efficiency with certain types of dyestuffs and some metals. The elimination of the adsorbent (requires incineration, regeneration, or replacement of the material), Regeneration is expensive and results in loss of material, Economically nonviable for certain industries (pulp and paper, textile, etc.) [85].

Conclusion

Based on our review, we conclude that the hydrothermal method has advantages over other methods such as relatively low-cost, non-toxicity, environmentally friendly precursors, and simple procedures. The benefits of combining SiO₂ with Fe₂O₃, silica, and iron sand/magnetite material attracted our attention because of their easy synthesis and can be quickly processed from natural materials found in nature. A characterization that has to be done is XRD, TEM, SEM, and VSM. XRD to examine the crystal structure of the sample, TEM offers valuable data regarding the structure among the sample, like crystal structure, morphology, and stress state

data. In contrast, SEM provides data regarding the sample surface and its composition and VSM to see the magnetism of a fabric. Seeing the ability of SiO₂ and Fe₂O₃ materials that can be applied as adsorption, catalysis, and further filtration materials, these materials have great potential in overcoming water pollution in the environment. We hope that in the future, there will be a lot of integration of laboratory research that develops the extraordinary materials of silica and magnetite in dealing with water pollution in the environment.

Acknowledgment

The research/publication of this text was funded by DIPA of Public agency of Universitas Sriwijaya 2021. SP DIPA-023.17.2.677515 / 2021, on November 23, 2020. Following the Rector's Decree Number: 0010/ UN9/ SK.LP2M.PT/2021, on April 28, 2021.

References

- [1] A. Issakhov, A. Alimbek, and Y. Zhandaulet, "The assessment of water pollution by chemical reaction products from the activities of industrial facilities: Numerical study," *J. Clean. Prod.*, vol. 282, p. 125239, 2021.
- [2] M. C. Villarín and S. Merel, "Paradigm shifts and current challenges in wastewater management," *J. Hazard. Mater.*, vol. 390, no. January, p. 122139, 2020.
- [3] A. Izadi, A. Mohebbi, M. Amiri, and N. Izadi, "Removal of iron ions from industrial copper raffinate and electrowinning electrolyte solutions by chemical precipitation and ion exchange," *Miner. Eng.*, vol. 113, pp. 23–35, 2017.
- [4] C. Zamora-Ledezma *et al.*, "Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods," *Environ. Technol. Innov.*, vol. 22, p. 101504, 2021.
- [5] S. Wacławek, H. V. Lutze, K. Grübel, V. V. T. Padil, M. Černík, and D. D. Dionysiou, "Chemistry of persulfates in water and wastewater treatment: A review," *Chem. Eng. J.*, vol. 330, pp. 44–62, 2017.
- [6] S. Giri, "Water quality prospective in Twenty-First Century: Status of water quality in major river basins, contemporary strategies, and impediments: A review," *Environ. Pollut.*, vol. 271, p. 116332, 2021.
- [7] I. Saikia, M. Hazarika, N. Hussian, M. R. Das, and C. Tamuly, "Biogenic synthesis of Fe2O3@SiO2 nanoparticles for ipso-hydroxylation of boronic acid in the water," *Tetrahedron Lett.*, vol. 58, no. 45, pp. 4255–4259, 2017.
- [8] W. S. Chai *et al.*, "A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application," *J. Clean. Prod.*, vol. 296, p. 126589, 2021.
- [9] Q. Feng *et al.*, "Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying," *Colloids Surfaces A Physicochem. Eng. Asp.*, vol. 539, no. December 2017, pp. 399–406, 2018.
- [10] W. Li *et al.*, "Experimental study on shear property and rheological characteristic of superfine cement grouts with nano-SiO2 addition," *Constr. Build. Mater.*, vol. 228, 2019.
- [11] M. Kavand, P. Eslami, and L. Razeh, "The adsorption of cadmium and lead ions from the synthesis wastewater with the activated carbon: Optimization of the single and binary systems," *J. Water Process Eng.*, vol. 34, no. January, p. 101151, 2020.

- [12] J. L. Marques *et al.*, "Removal of Al (III) and Fe (III) from binary system and industrial effluent using chitosan films," *Int. J. Biol. Macromol.*, vol. 120, no. Iii, pp. 1667–1673, 2018.
- [13] V. P. Dinh *et al.*, "Insight into the adsorption mechanisms of methylene blue and chromium(III) from aqueous solution onto pomelo fruit peel," *RSC Adv.*, vol. 9, no. 44, pp. 25847–25860, 2019.
- [14] Y. Wei *et al.*, "Fast and efficient removal of As(III) from water by CuFe2O4 with peroxymonosulfate: Effects of oxidation and adsorption," *Water Res.*, vol. 150, no. Iii, pp. 182–190, 2019.
- [15] D. Bouazza, H. Miloudi, M. Adjdir, A. Tayeb, and A. Boos, "Competitive adsorption of Cu (II) and Zn (II) on impregnate raw Algerian bentonite and efficiency of extraction," *Appl. Clay Sci.*, vol. 151, no. November 2017, pp. 118–123, 2018.
- [16] S. Narzary, K. Alamelu, V. Raja, and B. M. Jaffar Ali, "Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants," J. Environ. Chem. Eng., vol. 8, no. 5, p. 104373, 2020.
- [17] S. Rohilla *et al.*, "Excellent UV-Light Triggered Photocatalytic Performance of ZnO . SiO 2 Nanocomposite for Water Pollutant Compound Methyl Orange Dye," *nanomaterials*, vol. 11, no. 2548, pp. 1–17, 2021.
- [18] P. Sharma, J. Kherb, J. Prakash, and R. Kaushal, "A novel and facile green synthesis of SiO2 nanoparticles for removal of toxic water pollutants," *Appl. Nanosci.*, no. 0123456789, 2021.
- [19] H. R. Ali, H. N. Nassar, and N. S. El-Gendy, "Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants," *Energy Sources, Part A Recover. Util. Environ. Eff.*, vol. 39, no. 13, pp. 1425–1434, 2017.
- [20] H. H. Mungondori, S. Ramujana, D. M. Katwire, and R. T. Taziwa, "Synthesis of a novel visible light responsive γ-Fe 2 O 3 /SiO 2 / C-TiO 2 magnetic nanocomposite for water treatment," *Water Sci. Technol.*, vol. 78, no. 12, pp. 2500–2510, 2018.
- [21] J. Wang *et al.*, "SiO2 mediated templating synthesis of γ-Fe2O3/MnO2 as peroxymonosulfate activator for enhanced phenol degradation dominated by singlet oxygen," *Appl. Surf. Sci.*, vol. 560, no. May, p. 149984, 2021.
- [22] N. Yan *et al.*, "Hollow Porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries," *Sci. Rep.*, vol. 3, pp. 1–6, 2013.
- [23] L. Hao, H. Song, L. Zhang, X. Wan, Y. Tang, and Y. Lv, "SiO 2/graphene composite for highly selective adsorption of Pb(II) ion," *J. Colloid Interface Sci.*, vol. 369, no. 1, pp. 381–387, 2012.
- [24] M. Khan and I. M. C. Lo, "Removal of ionizable aromatic pollutants from contaminated water using nano γ-Fe 2 O 3 based magnetic cationic hydrogel: Sorptive performance, magnetic separation and reusability," *J. Hazard. Mater.*, vol. 322, pp. 195–204, 2017.
- [25] S. Teixeira *et al.*, "Photocatalytic degradation of recalcitrant micropollutants by reusable Fe3O4/SiO2/TiO2 particles," *J. Photochem. Photobiol. A Chem.*, vol. 345, pp. 27–35, 2017.
- [26] M. Rincón Joya, J. Barba Ortega, J. O. D. Malafatti, and E. C. Paris, "Evaluation of

Photocatalytic Activity in Water Pollutants and Cytotoxic Response of α-Fe2O3 Nanoparticles," *ACS Omega*, vol. 4, no. 17, pp. 17477–17486, 2019.

- [27] X. L. Chen, F. Li, H. Y. Chen, H. J. Wang, and G. G. Li, "Fe2O3/TiO2 functionalized biochar as a heterogeneous catalyst for dyes degradation in water under Fenton processes," *J. Environ. Chem. Eng.*, vol. 8, no. 4, p. 103905, 2020.
- [28] H. A. Budiarti, R. N. Puspitasari, A. M. Hatta, Sekartedjo, and D. D. Risanti, "Synthesis and Characterization of TiO2@SiO2 and SiO2@TiO2 Core-Shell Structure Using Lapindo Mud Extract via Sol-Gel Method," *Procedia Eng.*, vol. 170, pp. 65–71, 2017.
- [29] Y. Orooji, S. Mortazavi-Derazkola, S. M. Ghoreishi, M. Amiri, and M. Salavati-Niasari, "Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity," *J. Hazard. Mater.*, vol. 400, no. June, p. 123140, 2020.
- [30] I. Fatimah *et al.*, "Physicochemical characteristics and photocatalytic performance of TiO2/SiO2 catalyst synthesized using biogenic silica from bamboo leaves," *Heliyon*, vol. 5, no. 11, p. e02766, 2019.
- [31] J. Saini, V. K. Garg, and R. K. Gupta, "Green synthesized SiO2@OPW nanocomposites for enhanced Lead (II) removal from water," *Arab. J. Chem.*, vol. 13, no. 1, pp. 2496–2507, 2020.
- [32] T. H. Sani, M. Hadjmohammadi, and M. H. Fatemi, "Extraction and determination of flavonoids in fruit juices and vegetables using Fe3O4/SiO2 magnetic nanoparticles modified with mixed hemi/ad-micelle cetyltrimethylammonium bromide and high performance liquid chromatography," J. Sep. Sci., vol. 43, no. 7, pp. 1224–1231, 2020.
- [33] D. Asmi, A. Z. Syahrial, and M. Badaruddin, "Improvement High Purity Biogenic Amorphous SiO2 Derived from Rice Husk Ash: Synthesis and its Characterization," *Mater. Sci. Forum*, vol. 1029, pp. 175–180, 2021.
- [34] M. Sajjadi, M. Nasrollahzadeh, and S. Mohammad Sajadi, "Green synthesis of Ag/Fe3O4 nanocomposite using Euphorbia peplus Linn leaf extract and evaluation of its catalytic activity," J. Colloid Interface Sci., vol. 497, pp. 1–13, 2017.
- [35] E. C. Nnadozie and P. A. Ajibade, "Green synthesis and characterization of magnetite (Fe3O4) nanoparticles using Chromolaena odorata root extract for smart nanocomposite," *Mater. Lett.*, vol. 263, p. 127145, 2020.
- [36] X. Weng, L. Ma, M. Guo, Y. Su, R. Dharmarajan, and Z. Chen, "Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by euphorbia cochinchinensis extract," *Chem. Eng. J.*, vol. 353, no. May, pp. 482–489, 2018.
- [37] R. Heydari, M. F. Koudehi, and S. M. Pourmortazavi, "Antibacterial Activity of Fe3O4/Cu Nanocomposite: Green Synthesis Using Carum carvi L. Seeds Aqueous Extract," *ChemistrySelect*, vol. 4, no. 2, pp. 531–535, 2019.
- [38] R. Mahajan, S. Suriyanarayanan, and I. A. Nicholls, "Improved solvothermal synthesis of γ-Fe2O3 magnetic nanoparticles for SiO2 coating," *Nanomaterials*, vol. 11, no. 8, 2021.

- [39] Hongbo Yu et al., "One-pot synthesis of Au-Fe2O3@SiO2 core-shell nanoreactors for CO oxidation," New J. Chem., vol. 44, no. 15, pp. 5661–5665, 2020.
- [40] A. Nadar *et al.*, "Immobilization of crystalline Fe2O3 nanoparticles over SiO2 for creating an active and stable catalyst: A demand for high temperature sulfuric acid decomposition," *Appl. Catal. B Environ.*, vol. 283, no. October 2020, p. 119610, 2021.
- [41] M. Khoshnam and H. Salimijazi, "Synthesis and characterization of magneticphotocatalytic Fe3O4/SiO2/a-Fe2O3 nano core-shell," *Surfaces and Interfaces*, vol. 26, no. May 2020, p. 101322, 2021.
- [42] C. Park, J. Jung, C. W. Lee, and J. Cho, "Synthesis of Mesoporous α-Fe 2 O 3 Nanoparticles by Non-ionic Soft Template and Their Applications to Heavy Oil Upgrading," *Sci. Rep.*, vol. 6, no. August, pp. 1–9, 2016.
- [43] X. Ji, W. Zhang, L. Shan, Y. Tian, and J. Liu, "Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics," *Sci. Rep.*, vol. 5, no. December, pp. 1–10, 2015.
- [44] F. Wang *et al.*, "Corn-like, recoverable γ-Fe2O3@SiO2@TiO2 photocatalyst induced by magnetic dipole interactions," *Sci. Rep.*, vol. 7, no. 1, pp. 2–11, 2017.
- [45] G. Bharath, S. Anwer, R. V. Mangalaraja, E. Alhseinat, F. Banat, and N. Ponpandian, "Sunlight-Induced photochemical synthesis of Au nanodots on α-Fe2O3@Reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties," *Sci. Rep.*, vol. 8, no. 1, pp. 1–14, 2018.
- [46] M. R. A. Kumar, B. Abebe, H. P. Nagaswarupa, H. C. A. Murthy, C. R. Ravikumar, and F. K. Sabir, "Enhanced photocatalytic and electrochemical performance of TiO2-Fe2O3 nanocomposite: Its applications in dye decolorization and as supercapacitors," *Sci. Rep.*, vol. 10, no. 1, pp. 1–15, 2020.
- [47] Y. Xu *et al.*, "A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products," *Science (80-.).*, vol. 613, no. February, pp. 610–613, 2021.
- [48] B. T. da Fonseca, E. D'Elia, J. M. Siqueira Júnior, S. M. de Oliveira, K. L. dos Santos Castro, and E. S. Ribeiro, "Study of the characteristics and properties of the SiO2/TiO2/Nb2O5 material obtained by the sol-gel process," *Sci. Rep.*, vol. 11, no. 1, pp. 1–15, 2021.
- [49] P. Ning, X. Song, K. Li, C. Wang, L. Tang, and X. Sun, "Catalytic hydrolysis of carbonyl sulphide and carbon disulphide over Fe2O3 cluster: Competitive adsorption and reaction mechanism," *Sci. Rep.*, vol. 7, no. 1, pp. 2–10, 2017.
- [50] C. Li *et al.*, "Hierarchical hollow Fe2O3 @MIL-101(Fe)/C derived from metal-organic frameworks for superior sodium storage," *Sci. Rep.*, vol. 6, no. January, pp. 1–8, 2016.
- [51] Y. Q. Cao *et al.*, "Enhanced visible light photocatalytic activity of Fe2O3 modified TiO2 prepared by atomic layer deposition," *Sci. Rep.*, vol. 10, no. 1, pp. 1–10, 2020.
- [52] S. Bahadorikhalili, L. Ma'mani, H. Lijan, and M. Mahdavi, "γ-Fe2O3@SiO2(CH2)3-HPBM-Pd as a versatile boosted nanocatalyst for carboncarbon bond f[sbnd]ormation," *Mater. Today Commun.*, vol. 26, no. July, 2021.

- [53] J. Edianta, N. Fauzi, M. Naibaho, F. S. Arsyad, and I. Royani, "Review of the effectiveness of plant media extracts in barium hexaferrite magnets (Bafe12o19)," *Sci. Technol. Indones.*, vol. 6, no. 2, pp. 39–52, 2021.
- [54] S. Gholamrezaei, M. Salavati-Niasari, D. Ghanbari, and S. Bagheri, "Hydrothermal preparation of silver telluride nanostructures and photocatalytic investigation in degradation of toxic dyes," *Sci. Rep.*, vol. 6, no. October 2015, pp. 1–13, 2016.
- [55] M. Le Pivert, R. Poupart, M. Capochichi-Gnambodoe, N. Martin, and Y. Leprince-Wang, "Direct growth of ZnO nanowires on civil engineering materials: smart materials for supported photodegradation," *Microsystems Nanoeng.*, vol. 5, no. 1, pp. 1–7, 2019.
- [56] Y. Ma, Y. Wang, T. Jiang, F. Zhang, X. Li, and Y. Zhu, "Hydrothermal synthesis of novel 1aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity," *Sci. Rep.*, vol. 10, no. 1, pp. 1–15, 2020.
- [57] O. V. Makarchuk, T. A. Dontsova, and I. M. Astrelin, "Magnetic Nanocomposites as Efficient Sorption Materials for Removing Dyes from Aqueous Solutions," *Nanoscale Res. Lett.*, vol. 11, no. 1, 2016.
- [58] M. Misawa *et al.*, "Picosecond amorphization of SiO2 stishovite under tension," *Sci. Adv.*, vol. 3, no. 5, pp. 1–8, 2017.
- [59] G. F. Agung M, M. R. Hanafie Sy, and P. Mardina, "Ekstraksi Silika Dari Abu Sekam Padi Dengan Pelarut Koh," *Konversi*, vol. 2, no. 1, p. 28, 2013.
- [60] Rizki Kusuma, "Analisis Struktur Kristal Dan Sifat Magnetik Pasir Besi Sungai Bengawan Solo Kecamatan Trucuk Kabupaten Bojonegoro," 2017.
- [61] S. Y. Ning *et al.*, "Direct separation of minor actinides from high level liquid waste by Me 2 -CA-BTP/SiO2-P adsorbent," *Sci. Rep.*, vol. 7, no. 1, pp. 1–7, 2017.
- [62] Q. Ma *et al.*, "The relation between residual stress, interfacial structure and the joint property in the SiO2f/SiO2-Nb joints," *Sci. Rep.*, vol. 7, no. 1, pp. 1–11, 2017.
- [63] M. Green *et al.*, "Doped, conductive SiO2 nanoparticles for large microwave absorption," *Light Sci. Appl.*, vol. 7, no. 1, 2018.
- [64] N. Zhang, M. Xu, and L. Cai, "Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor," *Sci. Rep.*, vol. 9, no. 1, pp. 1–9, 2019.
- [65] U. Kasimayan *et al.*, "In-situ DRIFT investigation of photocatalytic reduction and oxidation properties of SiO2@α-Fe2O3 core-shell decorated RGO nanocomposite," *Sci. Rep.*, vol. 10, no. 1, pp. 1–13, 2020.
- [66] X. Xue, V. Sukhotskiy, and E. P. Furlani, "Optimization of Optical Absorption of Colloids of SiO2@Au and Fe3O4@Au Nanoparticles with Constraints," *Sci. Rep.*, vol. 6, no. October, pp. 1–10, 2016.
- [67] M. Kapoor and J. R. Hwu, "Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides," *Sci. Rep.*, vol. 6, no. October, pp. 6–13, 2016.

- [68] S. Gurbán *et al.*, "Electron irradiation induced amorphous SiO2 formation at metal oxide/Si interface at room temperature; Electron beam writing on interfaces," *Sci. Rep.*, vol. 8, no. 1, pp. 1–7, 2018.
- [69] B. S. Vasile, C. Chircov, M. Matei, and I. A. Neacs, "Iron Oxide Silica Core Shell Nanoparticles Functionalized with Essential Oils for Antimicrobial Therapies," pp. 1–26, 2021.
- [70] I. Gabelica, L.' Curkovi'c, V. Mandi'c, I. Panži'c, D. Ljubas, and K. Zadro, "Rapid Microwave-Assisted Synthesis of Fe3O4/SiO2/TiO2 Core-2-Layer-Shell Nanocomposite for Photocatalytic Degradation of Ciprofloxaci," pp. 4–5, 2019.
- [71] A. G. Jacob, R. A. Wahab, and Mailin Misson, "Operational Stability, Regenerability, and Thermodynamics Studies on Biogenic Silica/Magnetite/Graphene Oxide Nanocomposite-Activated Candida rugosa Lipase," 2021.
- [72] L. Jiao *et al.,* "Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts," *Nat. Commun.,* vol. 11, no. 1, pp. 1–7, 2020.
- [73] S. Ishak, S. Mandal, H. S. Lee, and J. K. Singh, "Microencapsulation of stearic acid with SiO2 shell as phase change material for potential energy storage," *Sci. Rep.*, vol. 10, no. 1, pp. 1–15, 2020.
- [74] P. Singh, S. Mishra, A. Sahoo, and S. Patra, "A magnetically retrievable mixed-valent Fe3O4@SiO2/Pd0/PdII nanocomposite exhibiting facile tandem Suzuki coupling/transfer hydrogenation reaction," *Sci. Rep.*, vol. 11, no. 1, pp. 1–11, 2021.
- [75] Y. H. Son *et al.*, "Super fine cerium hydroxide abrasives for SiO2 film chemical mechanical planarization performing scratch free," *Sci. Rep.*, vol. 11, no. 1, pp. 1–10, 2021.
- [76] R. I. Revilla, X. J. Li, Y. L. Yang, and C. Wang, "Large electric field-enhanced-hardness effect in a SiO2 film," *Sci. Rep.*, vol. 4, 2014.
- [77] M. Z. H. Khan, M. Daizy, C. Tarafder, and X. Liu, "Au-PDA@SiO2 core-shell nanospheres decorated rGO modified electrode for electrochemical sensing of cefotaxime," *Sci. Rep.*, vol. 9, no. 1, pp. 1–6, 2019.
- [78] T. Yamamoto *et al.*, "Development of a quantitative, portable, and automated fluorescent blue-ray device-based malaria diagnostic equipment with an on-disc SiO2 nanofiber filter," *Sci. Rep.*, vol. 10, no. 1, pp. 1–12, 2020.
- [79] C. Li, C. Xu, D. Cahen, and Y. Jin, "Unprecedented efficient electron transport across Au nanoparticles with up to 25-nm insulating SiO2-shells," *Sci. Rep.*, vol. 9, no. 1, pp. 1–9, 2019.
- [80] K. Nemeth *et al.*, "Synthesis and investigation of SiO2-MgO coated MWCNTs and their potential application," *Sci. Rep.*, vol. 9, no. 1, pp. 1–11, 2019.
- [81] Y. Huang *et al.*, "Mn3[Co(CN)6]2@SiO2 Core-shell Nanocubes: Novel bimodal contrast agents for MRI and optical imaging," *Sci. Rep.*, vol. 3, pp. 1–7, 2013.
- [82] X. Niu, T. Zhao, F. Yuan, and Y. Zhu, "Preparation of hollow CuO@SiO2 spheres and its catalytic performances for the NO + CO and CO oxidation," *Sci. Rep.*, vol. 5, no. 1, pp. 1–8, 2015.

- [83] Y. Pang, Z. Rong, R. Xiao, and S. Wang, " 'turn on' and label-free core Shell Ag@SiO2 nanoparticles-based metal-enhanced fluorescent (MEF) aptasensor for Hg2+," *Sci. Rep.*, vol. 5, pp. 1–8, 2015.
- [84] A. Ishii and M. Hasegawa, "An interfacial europium complex on SiO2 nanoparticles: Reduction-induced blue emission system," *Sci. Rep.*, vol. 5, pp. 5–10, 2015.
- [85] G. Crini and E. Lichtfouse, "Advantages and disadvantages of techniques used for wastewater treatment," *Environ. Chem. Lett.*, vol. 17, no. 1, pp. 145–155, 2019.