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 A quantum system in the thermal equilibrium state is a mixed state 
consisting of statistical ensembles of several different quantum 
systems can be represented by a thermal density matrix. In this 
research, the thermal density matrix is calculated for two-particle 
system case non-interaction in one-dimensional square well and one-
dimensional harmonic oscillator using finite difference time domain 
(FDTD) method. In addition, thermal density matrix calculations are 
also performed for the case of two particle systems interacting in a 
one-dimensional harmonic oscillator. We present results of 
probability densities, partition functions, and internal energies for 
three cases: two distinguishable particles, two fermions and two 
bosons. Validation of numerical results of thermal density matrix 
and probability density is accurate with analytical solutions. Then, 
the result of partition function and internal energy the system is 
strongly effect by temperature. At low temperatures, internal energy 
the system will lead to the lowest energy or ground state. 
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Introduction 

A quantum system can be fully explained by a wave function if the system is in a pure state. 
A system is said to be in pure state if the N-system is in the same state and there is only one 
eigen value that has value and the other is zero. One example of the pure state of the atom or 
molecule is isolated in eigenstate [2]. But in practice, many quantum systems exist not only in 
pure state but also in mixed states comprising statistical ensembles of several different 
quantum systems [8], so calculations are required using a statistical operator density matrix. 
A quantum system in a state of thermal equilibrium is an example of a mixed state that can 
be represented by a thermal density matrix [4]. 

 
Density matrix was calculated using a time dependent Schrodinger equation solution. The 
analytical solution of the Schrodinger equation can solve only a small number of ideal cases 
and it is difficult to determine all eigenvalues and wave functions for two or more particles 
due to complex and long-term mathematical needs [18]. To simplify it requires a simple and 
fast method in calculating the density matrix even for a single particle system that is by 
numerical method. 
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Methods used to calculate numerical density matrix include Path Integral (PI), Monte Carlo 
(MC), and Finite Difference Time Domain (FDTD) methods. Among all the numerical 
methods available, the simplest and most appropriate method used to solve numerical 
solutions of time dependent equations is the FDTD method, because it has better efficiency 
and higher accuracy than other methods [10]. FDTD method is easy in programming and 
does not have to use super computer in running program. While Path Integral (PI) and 
Monte Carlo (MC) method in calculating density matrix requires manipulation of grid count 
and requires another approach to get wave function. 
 
The FDTD method was successfully developed by Sudiarta and Geldart (2007) to solve a one 
dimensional, two dimensional, and three dimensional schrodinger equation solution. The 
solution of Schrodinger equation is done by transforming real time into imaginary time. In 
2009, Sudiarta and Geldart used the FDTD method for numerical calculations of the density 
matrix for a single-particle quantum system with various potentials and explained numerical 
algorithms to solve single particle system cases in one, two and three dimensions. In 
addition, numerical equations of the FDTD method can also be used for systems of two or 
more particles, including bosons and fermions because of their great relevance in physics and 
quantum chemistry. 
 
So, in this research will be calculated thermal density matrix, density, partition function, and 
internal energy system two distinguishable particles, two bosons and two fermions in one-
dimensional square well and one-dimensional harmonic oscillator using the FDTD method 
by Sudiarta and Geldart. To get a good numerical method, should be done gradually from 
low to high dimension. Therefore, in this case study applied two particles in one dimension 
so that accuracy of thermal density matrix calculation, density, partition function, and 
internal energy can be easily validated with analytic solution. 
 
Theory and Calculation (if any) 
Bloch Density Matrix 
The bloch density matrix is formed by summing the product wave function of the 
Schrodinger equation in imaginary time with the initial conditions selected. The reduction of 
the time-dependent Schr  odinger equation solution for the two-particle system in this study 
follows the declination techniques that have been done by [18], to obtain a bloch density 
matrix for a two-particle system, 

                        
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Then, the canonical thermal density matrix for a two-particle system is obtained by dividing 
the bloch density matrix with the system partition function, 
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And for the particle density or diagonal elements the density matrix is obtained by equating 
the coordinates ie R '= R [1]. Then the obtained density is integrated and used 

   * ' 1n n d   R R R
, 

it is obtained the partition function for the two particle system shown 

by the equation below, 
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While for energy in two particle system can be determined from equation (3) that is [2], 
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And the eigen energy value of the two particle system is 
2 2

1 2

2
n

n n
E


 . For two-particle 

systems have three cases: two distinguishable particles and two indistinguishable particles. 
Two distinguished particles follow the Maxwell Boltzmann distribution, whereas two 
indistinguishable particles have two states: the particles have different spins and particles 
having the same spin. Particles with different spins can occupy the same state according to 
the Bose Einstein distribution, whereas the particles with the same spin can not be in the 
same state according to the Fermi Dirac distribution. In the study for particles with different 
spins used n1 = n2. As for the same spin particles are used the condition that (n1 ≠ n2). 

 
Reduce Two Particles to One Particle 
The reduction of one particle (1-RDM) is essentially the square of a wave function that has all 
the coordinates of a particle, be it a particle one or a second particle. It can be seen in (5) 

below that the RDM of a single particle has only been 
2

  integrated into all the coordinates 

except, with the coordinates of the particle one. The equation for reducing two particles to a 
single particle is 
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with 1 1( , ')x x  is a particle density submatrix and Tr [ρ] is worth one if it is normalized [1]. 

 
Experimental Method 

Numerical Method 

Following the technique [17] the numerical solution of the time-dependent Schrodinger 

equation for two 1D particles with potential  1 2,V x x  is, 
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By using the atomic unit conversion ℏ = m = 1 and the real time transformation into the 
imaginary time τ = it equation (6) will be 

                 
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The process of numericalization of equation (7) is to discretize using a finite difference 

scheme. By applying    1 1 2, 2   ( ) ,  n i i i i x n       with Δx and Δτ are space and time. 

For time derivatives it is a forward finite difference and a space derivative is twice a central 
finite difference. 
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For a stable simulation, the value of Δτ must be stable and given by the relationship 
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To get all the conditions (eigenstate) in the simulation used the initial wave function is a 
random function. Each simulation process is completed marked by the convergence of 
energy and randomized functions. Equation (7) is used iteratively to develop wave 
functions for the initial function. Then the numerical equation bloch density matrix is 
determined by using (1). 

 
Result and Discussion 

One-dimensional Square Well 

Numerical equations of two-particle systems with dimensional widths a = π with                    
V (x1, x2) = 0 for 0 ˂ x1, x2 ˂ π and V (x1, x2) = for x1, x2 ˃ π and x1, x2 ˂ 0. Wave functions 
for potential wells for the three cases of distinguishable particles, bosons (symmetry) and 
fermions (antisymmetry) is, 
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Bloch density matrix is obtained from wave function using equation (1) for the three cases of 
two distinguishable particles (15), boson and fermion (16) is

 

       

2 2 '

1 2 12 12

1 1 2 22
1 0 2 01 1 2 2

1 1 2 2

( ( ) / 2)            0 x  < π  0 x  π  
2

[ ( ) ( )]  
( , ', , ', )

[ ( ') ( ')]            

<

 

0

n n

exp n n x For and

sin n x sin n x x
C x x x x

sin n x sin n x

otherwise



 

 

 

    



 






     

(15) 

and 

   

1 2

2 2

1 2 '

12 12

1 1 2 2 1 2 2 12

1 1 2 2

1 1 2 2 1 2 2 1

( ( ) / 2)  
        0 x  < π and 0 x  π  2

[ ( ) ( ) ( ) ( )]  
( , ', , ', )

[ ( ') ( ') ( ') ( ')]

0

<

n n

otherwise

exp n n x
For

sin n x sin n x sin n x sin n x x
C x x x x

sin n x sin n x sin n x sin n x



 

  
 


 







  

(16) 

Bloch density matrix for the case of two distinguishable particles, two boson and two 
fermion are then reduced to a single particle density matrix equation so that the above 
equation, 
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           (18) 

 
To calculate the analytical solution of probability density, partition function, and internal 
energy are obtained by deriving equations (17) and (18) using equations (2), (3), (4) and (5). 
 

The density matrix analytical solution used as a comparison is the Bloch Density Matrix 

equation disclosed by [12] by taking temperature T = 1 for low temperatures and T = 10 for 

high temperature (with T in one unit temperature) for two distinguishable particles, two 

bosons and two fermions. Comparison of density matrix results using FDTD method with 

reference can be seen in Figure 5.1, Figure 5.2 and Figure 5.3. 

 

The numerical results obtained by the FDTD method for density matrix are accurate with 

analytic results. The result of density matrix in two dimensional form has been converted 

into one dimension by assuming x '= x, so that the density of particle or diagonal element of 

density matrix n(x) = ρ (x, x, β) with T = 1, T = 10, and T = 100. The results obtained by using 

FDTD method are very suitable with the analytic result. The comparison of the results is 

shown in Figure 5.4. 
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              (a)                                 (b) 
Figure 5.1. Comparison of the numerical results of the thermal density matrix (circle) with the 
analytical solution (line) for two distingusable particles systems reduced to 1 particle (1-RDM) in one-
dimensional square well at (a) β = 0.1 (T = 10) and (b) β = 1 (T = 1) 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                         (b) 
Figure 5.2. Comparison of the numerical results of the thermal density matrix (circle) with the 
analytical solution (line) for two boson systems reduced to 1 particle (1-RDM) in one-dimensional 
square well at (a) β = 0.1 (T = 10) and (b) β = 1 (T = 1) 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                    (b) 
Figure 5.3. Comparison of the numerical results of the thermal density matrix (circle) with the 
analytical solution (line) for two fermion reduced to 1 particle (1-RDM) in one-dimensional square 
well at (a) β = 0.1    (T = 10) and (b) β = 1 (T = 1) 
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Figure 5.4.  Comparison of numerical results of density with analytical solutions (Lines) for two 
particle systems reduced to 1 particles n (x) = ρ (x1, x1, β) in potential wells 1D at β = 0.01 (T = 100) 
(Plus), β = 0.1  (T = 10) (Croses), and β = 1 (T = 1) (Circle) for all three cases (a) distinguishable,         
(b) bosons and (c) fermions. 

 
 

Figure 5.1, 5.2, 5.3 and 5.4 describe particle distribution or particle probability for three cases: 
two distinguishable particles, boson (n1 = n2) and fermion (n1 ≠ n2). The energy of a particle 
can not be known, but what can be done is to know the probability that a particle has a 
certain energy. In this study used closed systems or canonical systems that have contact with 
heat or environmental sources. Because the system is in an equilibrium state with a heat 
source, the system temperature must be equal to the heat source. Although the temperature 
is constant, the system energy will fluctuate due to the flow of energy going out and entering 
the system. Since energy is not constant, we can statistically say that any given energy has a 
certain probability. 
 
For symetris or boson states, the particles described by the wave function are able to occupy 
the same position in space and do not violate Pauli rules so that the resulting graphic results 
show that both particles occupy the same peak. If the particles are exchanged, since the 
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particles are indistinguishable, the distribution/probability of particles must be the same. On 
the other hand, for antisymetris  or fermionic conditions, the particles have negligible 
probabilities that are found close to each other because the particles should not be in the 
same space so that the results obtained show that both particles do not occupy the same 
peak. So the difference between the boson and the fermion is only on the phases only. 
As the preceding explanation, that the density of the particle represents the distribution or 
probability of the particle. By knowing the probability of a micro state or the probability of a 
particle system, then with that result can be determined the partition function and internal 
energy the system. The numerical results for the partition function and internal energy 
shown in Figure 5.5 are validated by analytical solutions obtained from the density matrix of 
(3) and (4) with the temperature range from T = 0.1 to T = 10. The resulting obtained already 
in accordance with analytical solutions. 

 

 

 

 

 

 

 

 

 

   

 

(a)                                                                       (b) 
Figure 5.5. Comparison of the numerical results of the partition function (a) and the internal energy 
(b) as a function of temperature with analytical solutions (Lines) for two particle systems in a potential 
well 1D for two distingusable particles (Square), two bosons (Circle) and two fermions (Triangle ). 
 

Partition function and internal energyis a function that explains the statistical properties of a 
system in equilibrium state. These two functions are interconnected with energy in the 
system can be expressed in the form of partition function or its derivative and both depend 
on temperature and other parameters such as gas volume and pressure. In this study, it is 
reviewed only the effect of temperature on a canonical ensemble system. Partition functions 
and internal energy are proportional to the temperature corresponding to (3) and (4). At low 
temperatures the energy in the system will lead to the lowest energy. 
 

One-dimensional Harmonic Oscillator  
The next case study to be discussed is a two particle system in one-dimensional harmonic 

oscillator with potential  
2 2

1 2
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
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obtained thermal density matrix for two-particle system non-interacting is [5], 
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By following steps such as equations (2), (3), and (4) we can obtain probaility density, 
partition function and internal energy for two particle systems in harmonic oscillators. 
 
To test the results of the accuracy of the research results for a two-particle system in a 1D 
harmonic oscillator potential, validation is required with analytic results. Two interacting 
particle systems such as two distinguishable particles, bosons and fermions have no 
analytical solution, then the numerical solution for a two-particle system in a harmonic 
oscillator potential is validated using a two-part system non-interacting because it has an 
analytical solution. In this study only calculate the density matrix for two identical two 
particles system is boson. 
 
 
Two Particle non-interacting 
Comparison of density matrix results using FDTD method with analytical solution for two-
part system without interaction can be seen in Figure 5.6, 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                    (b) 

Figure 5.6. Comparison of numerical results of thermal density matrix (Circle) with an analytical 
solution (Line) for 2 particles system without interaction reduced to 1 particle in 1D harmonic 
oscillator potential at (a) β = 0.1 (T = 10) and (b) β = 1 (T = 1) 

 
The numerical results of the density matrix by the FDTD method obtained for the two-
particle system non-interacting very well with the analytical solution of equation (20). Then 
from density matrix can be determined density of particle or diagonal element of density 
matrix n (x) = ρ (x, x, β) for system of two particles non-interaction in harmonic oscillator 
potential at temperature T = 1, T = 10, and T = 100. The result obtained by using FDTD 
method is very suitable with analytic result. The comparison of the results is shown in   
Figure 5.7. 
 
By subtracting the density matrix from equation (20) it can be determined the partition 
function and the internal energy using (3) and (4). As the previous explanation on the two-
particle system in the 1D potential well that partition function and internal energy is effected 
by temperature. With the partition function and internal energy proportional to the 
temperature change of the system and it also applies to the two-particle system in the 
harmonic oscillator potential. The numerical results for partition function and internal 
energy shown in Figure 5.8 are validated by analytical solutions obtained from the density 
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matrix with the temperature range from T = 0.1 to T = 10. The results obtained correspond to 
the analytical solution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.7. Comparison of numerical results of density or diagonal elements of density matrix with 
analytical solutions (Lines) for 2 particles system non-interacting reduced to 1 particles n (x) = ρ (x1, 
x1, β) in 1D harmonic oscillator potential at β = 0.01 (T = 100) (Plus), β = 0.1 (T = 10) (Crosses), and      
β = 1 (T = 1) (Circles). 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

    (a)                        (b) 

Figure 5.8. Comparison of the numerical results of the partition function (a) and  internal energy (b) 
as a function of temperature for the two-particle system non-interaction with the analytical solution 
(Line) in the 1D harmonic oscillator potential 

 

Two Particle interacting 

After validation of the numerical solution using a two-particle system non-interacting. The 
results obtained are accurate and in accordance with analytical solutions for density matrix, 
probability density, partition function and internal energy. From the validation results can be 
determined the results of numerical density matrix, probability density, partition function, 
and internal energy for two-particles system interacting with each other. Comparison of 
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density results using the FDTD method with analytical solution for a two-particle system 
non-interaction can be seen in Figure 5.9, 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

             (a)                                  (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                       (c) 

Figure 5.9. The numerical results of the density or diagonal elements of the density matrix for the two 
particle interacting systems are reduced to 1 particles n (x) = ρ (x1, x1, β) in 1D harmonic oscillator 
potential at β = 0.1 (T = 10) (Crosses) and β = 1 (T = 1) (Plus) for all three cases (a) distinguishable, (b) 

bosons and (c) fermions. 

  

 

The numerical results for partition functions and internal energy shown in Figure 5.10 for 
the two-particle system interacting in 1D harmonic oscillator potential obtained from the 
density matrix with a constant temperature range of T = 0.1 to T = 10 for all three cases. 
Although the temperature is constant, the system energy will fluctuate due to the flow of 
energy out and enter the system. Since energy is not constant, it can be statistically said that 
any given energy has a certain probability. In addition, the energy in when at low 
temperatures will lead to the lowest energy. 
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(a)                                                                         (b) 

Figure 5.10. The numerical results of the partition function (a) and internal energy (b) as a function of 
temperature for the two particle systems interacting in 1D harmonic oscillator potential for 
(distingusable) particles (Plus), for bosons (Circles) and for fermions (Crosses). 

 

Conclusion 
Validation of numerical results of density matrix and density using FDTD method with 
analytical solution is highly accurate for two distinguishable particles, two bosons and two 
fermions non-interacting in one-dimensional potential wells and two interaction bosons in a 
harmonic oscillator potential. Numerical results for partition functions and internal energy 
that are validated with analytical solutions are appropriate and from these results it is seen 
that the partition function and internal energy is strongly effect by temperature changes. 
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