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 One of the indispensable part of the theoretical physics interest is 
geometry differential. This one interest of physical area has been 
developed such as in electromagnetism. Maxwell's equations have 
been generalized in two covariant forms in differential form 
representation. A beautiful calculus vector in this representation, 
such as exterior derivative and Hodge star operator, lead this study. 
Electromagnetic wave equation has been expressed in differential 
form representation using Laplace-de Rham operator. Explicitly, 
wave equation shows the same form in Minkowski space-time like 
vector representation. This study is able to introduce us to learn 
application of  differential form in physics. 
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Introduction 

Electromagnetism as a basic science has a role to develop mathematics models. Earlier, In 
1865 Maxwell proposed four equations called Maxwell's equations. These equations are the 
core or the summary of natural phenomenon that is related to electromagnetic fields. The 
form of the Maxwell equation in covariant form has been studied in many books (Griffith, 
1999 and Jackson, 1999). Correspondingly, the study of physical phenomena in any 
coordinate system developed quite rapidly through the theory of mathematical geometry in 
a more general form. We start with the formulation of electromagnetic equations in 
differential form. 
 
Electromagnetic studies in differential form representations have been carried out in various 
studies, which are written in various papers and texts such as [3-6]. In 1981 the relationship 
of external derivatives to electromagnetic equations in 4-dimensional space (space-time) was 
studied [3]. The relationship diagram of the electromagnetic equation is made in such a way 
that the exterior derivative successfully satisfies the electromagnetic equation. 
Electromagnetic studies in differential form representations focusing on visual advantages 
obtained from differential form representations have also been described [4]. The form order 
for electromagnetic quantities are presented in visual form for the more easily understood of 
electromagnetism [4]. The steps to reduce Maxwell's equations in differential form 
representations are well explained by Owere [5] and Hossine and Ali [6]. 
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The study of electromagnetic equations in differential form representations which develop 
very rapidly allows electromagnetics to be studied in free coordinate space and other 
advantages. This encourages all matters related to electromagnetics to be assessed in the 
differential form representation. Actually, vector analysis is a real form of differential form, 
so differential form does not replace vectors. In particular cases, differential form and vector 
replace each other [4]. Therefore, in this paper, the explicitly component uses alternating 
differential forms and vectors. 
 
Metric and Minkowski Space Field Tensor 
The study of geometry and topology theory in physics has been written in many books. To 
understand many things about the application of geometrical concepts, especially the 
differential form can be seen in Nakahara [7]. However for more details, we start from the 
concept of tensor metric. A metric tensor introduces the length of a vector and an angle 
between every two vectors. The components of the metric are defined by the values of the 
scalar products of the basis vectors.  
 
In elementary geometry, the inner product between two vectors U and V is defined by 





m

i

iiVU
1

VU , where Ui and Vi are the components of the vectors in Rm. On a manifold, 

an inner product is defined at each tangent space TpM. Let M be a differentiable manifold. A 
Riemannian metric g on M is a type (0, 2) tensor field on M which satisfies the following 
axioms at each point p ∈ M [7]: 
 
(i) gp(U, V) = gp(V,U), 
(ii) gp(U,U) ≥ 0, where the equality holds only when U = 0. 
 
A tensor field g of type (0, 2) is a pseudo-Riemannian metric if it satisfies 
(i) and 
(ii’) if gp(U, V ) = 0 for any U ∈ TpM, then V = 0. 
 
If g is Riemannian, all the eigenvalues are strictly positive and if g is pseudo-Riemannian, 
some of them may be negative. If there are i positive and j negative eigenvalues, the pair (i,j) 
is called the index of the metric. If j = 1, the metric is called a Lorentz metric. Once a metric 
is diagonalized by an appropriate orthogonal matrix, it is easy to reduce all the diagonal 
elements to ±1 by a suitable scaling of the basis vectors with positive numbers. If we start 
with a Riemannian metric we end up with the Euclidean metric δ = diag(1, . . . , 1) and if we 
start with a Lorentz metric, the Minkowski metric η = diag(−1, 1, . . . , 1) [7]. 
 
Minkowski metric is the Lorentz metric on R4 that is written in terms of coordinates (ct; x; y; 
z) as 

222222 dzdydxdtcds   (1) 

where x, y and z are spatial dimensions, t is time dimension and c is speed of light. We use 
indices for space-time coordinates as follows: 

       2322212022 dxdxdxdxcds   (2) 
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which can be written as 


 dxdxds 2  (3) 

where   is the matrix 
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  (4) 

 
as we say before. This metric can be used to raising or lowering tensor index [7]. 
 

 
Maxwell Equation  

Electromagnetism is lead by Maxwell's equations, which gives a calculation of how the non-
permanent electric field can generate an impermanent magnetic field and vice versa. The 
four Maxwell equations are as follows. 

      (5) 

      (6) 

     
  

  
 (7) 

    
  

  
   (8) 

 
In the equation above, E is an electric field, B is a magnetic flux density, D is a electric flux 
density, H is a magnetic field, ρ is a charge density (charge per unit volume), and J is the 
total current density. In addition, there is also a constant μ which is the medium 
permeability and ε is the permivisity of the medium. For vacuum space, then the 
electromagnetic entity has a reference value of μ0 and ε0. This value is a universal constant 

through a relationship that is c = 1= 1/√    , where c is the speed of light in a vacuum. The 

charge density and current density have a relationship as follow 
 

  

  
       (9) 

called continuity equation. 
 
Using vector calculus of divergence, from (6) we can obtain hat B must be a curl of a vector 
function, namely the vector potential A, can be write as 

      (10) 
 
Substituting (10) into equation (7), we obtain 
 

  .  
  

  
/     
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which means that the term in the bracket can be written as the gradient of a scalar function, 
namely the scalar potential ϕ 
 

      
  

  
 (11) 

 
 
Manifold and Differential Form 
Let   is manifolds. Suppose that a tangent space on open subset     as a vector space 
which is written by    . A map          is a linier mapping from     to  . Vector 
space consisting of all linear mapping is called the dual tangent space for     at  , denoted 
by   

  . 
 
Suppose there is a mapping                which is a multi linier mapping from 
the   tangent space     to  . The vector space consisting of all multi linier mapping is 
referred to as space  -forms, denoted as   (   ). In addition, there is a multi linier mapping 
  
    

       
     which is a multi linier mapping from   dual tangent space   

   
to  . The set of all mappings from the   dual tangent space is denoted by   (  

  ). 
 
Suppose      

       
               which is multi linier mapping from the   

dual tangent spaces   
   and   tangent spaces     to  . This multi linier map called as 

tensor type (   ). Vector field can be defined as “a way of embedding" vector at a point.  
At  ∈    , there are various ways of embedding that produces the tangent vector at the 
point  . Vector field   on     can be written as a mapping 

 
     ( )  

Tensor fields have the same as the definition of a vector field. Tensor field of type (   ) is a 

way of embedding the point  that produces a tensor of type (   ). Tensor field   on   is 

differentiable cross section which can be written as 

          
           ( ) ∈    

         

The same type of tensor fields on   form a vector space over   and form a module over ring. 

The tangent bundle    on subset   is a collection of all the tangent space at  , i.e. 

   ⋃    

 ∈ 

  

Also, it can be defined dual tangent bundle, i.e.  

    ⋃  
  

 ∈ 

  

Manifolds   as a place of tangent bundle    is defined as the basic space. More generally, 

defined   outer fiber bundle on  , which is as follows. 

 

      (   )  *(    )  ∈     ∈  
 (  

  )+  



 Indonesian Physical Review. 1(1): 7-16 

11 
 

This outer bundle is a bundle which its fiber is   outer algebra of dual tangent space 

  
    ∈    Outer fiber bundle on base   define as 

    ⋃  

 ∈ 

(  
  )  

Differential forms on differentiable manifold ( ) can be defined in two points of view, 

namely from the viewpoint of algebra and geometry standpoint. Viewpoint of algebraic 

define differential forms as anti-symmetric multi linier mapping ( )     ( )    ( ). 

Viewpoint of differential geometry define differential forms as differentiable cross-sectional 

        

           (    )  

with     ( ) ∈  
 (  

  )          Element  -differential forms can be written as 

  
 

  
          

                

On differential forms, defined multiplication operator, i.e. the wedge product ( ). This 

operator is a totally anti-symmetric tensor product, i.e. 

                 ∑    ( )    ( )     ( )       ( ) 

 ∈  

 

 
Exterior Derivative and Hodge Star Operator 

Exterior derivative   is mapping           which is work on  -differential forms which 

defined as  

   
 

  
(
 

   
          

             )  

This operator has properties as follow. 

1. For constants c1, and c2 and forms ϕ1 and ϕ2 

d(c1ϕ1 + c2ϕ2)=c1dϕ1+c2dϕ2 

2. For a 0-form i.e., a function φ= A(x1, x2, … , xn) 

dφ = dA = Ax1 (x1, x2, … , xn)dx1 + … + Axn (x1, x2, … , xn)dxn 

3. For a n-form i.e., a function φ= A(x1, x2, … , xn)dxr1   dxr2    …   dxrn 

dφ = (dA)   (dxr1   dxr2    …   dxrn) 

In addition, there is also a Hodge   operator, which is mapping from           which is 

working on basis vector     which defined as follows. 

 (           )  
√   

(   ) 
                 

             

where є  is the totally anti-symmetric Levi-Civita permutation symbol. How this operator 
work to the basis form have been written in Hossine [6]. 
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Electromagnetic wave in Differential Form 

Maxwell equations with the source of the charge or current source is generally written in the 
four field vectors in 3-dimensional space, namely the electric field   magnetic field  , 
electric flux density  ,  and magnetic flux density  . The electric field is replaced in the 
form of 1-differential form   and magnetic flux density replaced by 2-differential forms B, 
which can be written as 

 
      

      
      

  (12) 

      
          

          
      (13) 

 
In space-time, we consider potential A as 1-form which component is A0, A1, A2, A3. In 
vector representation, A0 = ϕ and A1, A2, A3 are the component of potential vector A. Taking 
the exterior derivative to the A, and we remember the relation of (10) and (11), we obtain 

 

       
          

          
        

            
          

          
       

 

This equation is called electromagnetic field F that is  

 

             (14) 

 

Taking again exterior derivative to the (14), we obtain 

 

   (              )  
          (              )  

           
(              )  

          (              )  
          

 

From the properties of exterior derivative, we obtain that dF = d2A = 0, then the result the 
same as 

 

                 

                 
                 

                 

 

These equations have the same pattern with (6) and (7). So, dF = 0 called Homogenous 
Maxwell’s equations in differential form representation.  Starting form (13) and taking 
Hodge star operator we obtain 

 

         
          

          
       (15) 

            
          

          
       

 

Before next step, we define 1-form charge density and current density, namely J. So in 
space-time, J has component     

      
      

      . It is clear that 1-form J is 
combination of charge density and current density in vector space. Back to the (15), taking 
exterior derivative and Hodge star operator to the (15), for the step as [6], we obtain 
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      (              )  
  (              )  

  (16) 

                 (              )  
  (              )  

   

 

We set       , then the same as 

 

                 

                
  

                
  

                
  

 

These equations have the same pattern with (5) and (8). So,        called 
Inhomogeneous Maxwell’s equations in differential form representation. Now we get two 
covariant Maxwell’s equation in differential form. It surprisingly that the differential forms 
of Maxwell's equations are exactly the same as the covariant forms when expressed in terms 
of components. 

 

Next, we will show that how the calculus in differential form have the same form as it 
component on wave equation. For that, first we define Laplace operator in differential form 
representation. Unfortunately there is not a simple case, because if taking exterior derivative 
twice to the differential form, there will be vanish (     ). 

 

On differential form, Laplace operator define by the Laplace-de Rham operator [8] 

 

   (  ) (   ),(  )      -  (17) 

 

where      . Let we check for the electric wave equation in Minkowski space-time. In 

vector representation, this equation is       
   

   
  

  

  
  . We know that E is 1-form, so do 

J. So, on right hand, there are 1-form, as the derivative with time did not change form order. 
We take n = 4 and p = 1 on (17), we obtain 

 

   ,     -  (18) 

 

so in left hand, following the properties of exterior derivative and Hodge star operator, the 
Laplace-de Rham did not change form order. This obvious way to check the equality. In 
simple way, the wave equation in differential form representation can be written as 

 

,     -      
        (19) 

 

In component form, the calculation explicitly of  Laplace-de Rham operator as follow.  
Taking hodge star operator to E we obtain 

 

     (   
 )    (   

 )    (   
 )  
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Taking exterior derivative we obtain 

 

    (
   
   

 
   
   

 
   
   

)                 

 

Taking hodge star operator we obtain 

 

     (
   
   

 
   
   

 
   
   

)  (               ) 

 (
   

   
 
   

   
 
   

   
) (  ) 

  (
   
   

 
   
   

 
   
   

) 

 

Again, taking exterior derivative we obtain 

   

       
    
 (  ) 

    
    
      

    
    
      

    
    
      

    
    
      

   

 
    
 (  ) 

    
    
      

    
    
      

    
    
      

    
    
      

   

 
    
 (  ) 

    
    
      

    

Then 

       (
    
      

 
    
      

 
    
      

)    (
    
 (  ) 

 
    
      

 
    
      

)    

 (
    
      

 
    
 (  ) 

 
    
      

)     (
    
      

 
    
      

 
    
 (  ) 

)    

 

Now, taking exterior derivative to E we obtain 

 

   
   
   

        
   
   

        
   
   

        
    
   

        
   
   

   

     
   
   

        
   
   

        
   
   

        
   
   

   

     

           
Taking the hodge star operator, we obtain 

 

    (
   
   

 
   
   

)        (
   
   

 
   
   

)        (
   
   

 
   
   

)        
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Taking the exterior derivative, we obtain 

 

     ( 
    
      

 
    
      

 
    
 (  ) 

 
    
 (  ) 
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 (  ) 

)           

 ( 
    
      

 
    
      

 
    
      

)            

Taking Hodge star again, we get 

 

      (
    
      

 
    
      

 
    
 (  ) 

 
    
 (  ) 

 
    
 (  ) 
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 (
    
      

 
    
      

 
    
 (  ) 

 
    
 (  ) 
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 (  ) 
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 (  ) 
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 (
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Adding (           )  ,     - , we get  

 

,     -  
 
 
  

 (  ) 
    

 
 
  

 (  ) 
    

 
 
  

 (  ) 
    

 
 
  

 (  ) 
    

 
 
  

 (  ) 
   

 
    
 (  ) 
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 (  ) 
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 (  ) 
 

   

 (  ) 
 

   

 (  ) 
 

 

This is laplacian in Minkowski space-time. Additional term derivative 
   

 (  ) 
  shows calculus 

in differential form following vector representation in Minkowski space-time. The same 
way can applied to the 2-form magnetic field B wave equation. 
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Conclusion 
In this paper, we studied the electromagnetic theory in  4 spacetime. By using differential 

forms, we formulate electromagnetic wave on differential form representation.  This studied 

show that when expressed in terms of component, differential form can back again like 

equation in vector form. But, we know that differential form more general than vector as we 

desire. 
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